/******************************************************************************** * ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ * * Copyright (c) 2010-2012 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ #ifndef TIMER_H #define TIMER_H // Libraries #include #include #include #include #include "../configuration.h" #if defined(WINDOWS_OS) // For Windows platform #include #else // For Mac OS or Linux platform #include #endif // Namespace ReactPhysics3D namespace reactphysics3d { /* ------------------------------------------------------------------- Class Timer : This class will take care of the time in the physics engine. It uses fuunctions that depend on the current platform to get the current time. ------------------------------------------------------------------- */ class Timer { private : // -------------------- Attributes -------------------- // // Timestep dt of the physics engine (timestep > 0.0) double mTimeStep; // Current time of the physics engine long double mTime; // Last time the timer has been updated long double mLastUpdateTime; // Time difference between the two last timer update() calls long double mDeltaTime; // Used to fix the time step and avoid strange time effects double mAccumulator; // True if the timer is running bool mIsRunning; // -------------------- Methods -------------------- // // Private copy-constructor Timer(const Timer& timer); // Private assignment operator Timer& operator=(const Timer& timer); public : // -------------------- Methods -------------------- // // Constructor Timer(double timeStep); // Destructor virtual ~Timer(); // Return the timestep of the physics engine double getTimeStep() const; // Set the timestep of the physics engine void setTimeStep(double timeStep); // Return the current time long double getTime() const; // Start the timer void start(); // Stop the timer void stop(); // Return true if the timer is running bool getIsRunning() const; // True if it's possible to take a new step bool isPossibleToTakeStep() const; // Compute the time since the last update() call and add it to the accumulator void update(); // Take a new step => update the timer by adding the timeStep value to the current time void nextStep(); // Compute the interpolation factor double computeInterpolationFactor(); }; // Return the timestep of the physics engine inline double Timer::getTimeStep() const { return mTimeStep; } // Set the timestep of the physics engine inline void Timer::setTimeStep(double timeStep) { assert(timeStep > 0.0f); mTimeStep = timeStep; } // Return the current time inline long double Timer::getTime() const { return mTime; } // Return if the timer is running inline bool Timer::getIsRunning() const { return mIsRunning; } // Start the timer inline void Timer::start() { if (!mIsRunning) { #if defined(WINDOWS_OS) LARGE_INTEGER ticksPerSecond; LARGE_INTEGER ticks; QueryPerformanceFrequency(&ticksPerSecond); QueryPerformanceCounter(&ticks); mLastUpdateTime = double(ticks.QuadPart) / double(ticksPerSecond.QuadPart); #else // Initialize the lastUpdateTime with the current time in seconds timeval timeValue; gettimeofday(&timeValue, NULL); mLastUpdateTime = timeValue.tv_sec + (timeValue.tv_usec / 1000000.0); #endif mAccumulator = 0.0; mIsRunning = true; } } // Stop the timer inline void Timer::stop() { std::cout << "Timer stop" << std::endl; mIsRunning = false; } // True if it's possible to take a new step inline bool Timer::isPossibleToTakeStep() const { return (mAccumulator >= mTimeStep); } // Take a new step => update the timer by adding the timeStep value to the current time inline void Timer::nextStep() { assert(mIsRunning); // Update the current time of the physics engine mTime += mTimeStep; // Update the accumulator value mAccumulator -= mTimeStep; } // Compute the interpolation factor inline double Timer::computeInterpolationFactor() { return (mAccumulator / mTimeStep); } // Compute the time since the last update() call and add it to the accumulator inline void Timer::update() { long double currentTime; #if defined(WINDOWS_OS) LARGE_INTEGER ticksPerSecond; LARGE_INTEGER ticks; QueryPerformanceFrequency(&ticksPerSecond); QueryPerformanceCounter(&ticks); currentTime = double(ticks.QuadPart) / double(ticksPerSecond.QuadPart); #else // Compute the current time is seconds timeval timeValue; gettimeofday(&timeValue, NULL); currentTime = timeValue.tv_sec + (timeValue.tv_usec / 1000000.0); #endif // Compute the delta display time between two display frames mDeltaTime = currentTime - mLastUpdateTime; // Update the current display time mLastUpdateTime = currentTime; // Update the accumulator value mAccumulator += mDeltaTime; } } // End of the ReactPhysics3D namespace #endif