/******************************************************************************** * ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ * * Copyright (c) 2010-2013 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ #ifndef REACTPHYSICS3D_QUATERNION_H #define REACTPHYSICS3D_QUATERNION_H // Libraries #include #include "Vector3.h" #include "Matrix3x3.h" #include "../decimal.h" /// ReactPhysics3D namespace namespace reactphysics3d { // Class Quaternion /** * This class represents a quaternion. We use the notation : * q = (x*i, y*j, z*k, w) to represent a quaternion. */ struct Quaternion { public : // -------------------- Attributes -------------------- // /// Component x decimal x; /// Component y decimal y; /// Component z decimal z; /// Component w decimal w; // -------------------- Methods -------------------- // /// Constructor Quaternion(); /// Constructor with arguments Quaternion(decimal newX, decimal newY, decimal newZ, decimal newW); /// Constructor with the component w and the vector v=(x y z) Quaternion(decimal newW, const Vector3& v); /// Copy-constructor Quaternion(const Quaternion& quaternion); /// Create a unit quaternion from a rotation matrix Quaternion(const Matrix3x3& matrix); /// Destructor ~Quaternion(); /// Set all the values void setAllValues(decimal newX, decimal newY, decimal newZ, decimal newW); /// Set the quaternion to zero void setToZero(); /// Set to the identity quaternion void setToIdentity(); /// Return the vector v=(x y z) of the quaternion Vector3 getVectorV() const; /// Return the length of the quaternion decimal length() const; /// Return the square of the length of the quaternion decimal lengthSquare() const; /// Normalize the quaternion void normalize(); /// Inverse the quaternion void inverse(); /// Return the unit quaternion Quaternion getUnit() const; /// Return the conjugate quaternion Quaternion getConjugate() const; /// Return the inverse of the quaternion Quaternion getInverse() const; /// Return the orientation matrix corresponding to this quaternion Matrix3x3 getMatrix() const; /// Return the identity quaternion static Quaternion identity(); /// Dot product between two quaternions decimal dot(const Quaternion& quaternion) const; /// Compute the rotation angle (in radians) and the rotation axis void getRotationAngleAxis(decimal& angle, Vector3& axis) const; /// Compute the spherical linear interpolation between two quaternions static Quaternion slerp(const Quaternion& quaternion1, const Quaternion& quaternion2, decimal t); /// Overloaded operator for the addition Quaternion operator+(const Quaternion& quaternion) const; /// Overloaded operator for the substraction Quaternion operator-(const Quaternion& quaternion) const; /// Overloaded operator for addition with assignment Quaternion& operator+=(const Quaternion& quaternion); /// Overloaded operator for substraction with assignment Quaternion& operator-=(const Quaternion& quaternion); /// Overloaded operator for the multiplication with a constant Quaternion operator*(decimal nb) const; /// Overloaded operator for the multiplication Quaternion operator*(const Quaternion& quaternion) const; /// Overloaded operator for the multiplication with a vector Vector3 operator*(const Vector3& point) const; /// Overloaded operator for assignment Quaternion& operator=(const Quaternion& quaternion); /// Overloaded operator for equality condition bool operator==(const Quaternion& quaternion) const; }; /// Set all the values inline void Quaternion::setAllValues(decimal newX, decimal newY, decimal newZ, decimal newW) { x = newX; y = newY; z = newZ; w = newW; } /// Set the quaternion to zero inline void Quaternion::setToZero() { x = 0; y = 0; z = 0; w = 0; } // Set to the identity quaternion inline void Quaternion::setToIdentity() { x = 0; y = 0; z = 0; w = 1; } // Return the vector v=(x y z) of the quaternion inline Vector3 Quaternion::getVectorV() const { // Return the vector v return Vector3(x, y, z); } // Return the length of the quaternion (inline) inline decimal Quaternion::length() const { return sqrt(x*x + y*y + z*z + w*w); } // Return the square of the length of the quaternion inline decimal Quaternion::lengthSquare() const { return x*x + y*y + z*z + w*w; } // Normalize the quaternion inline void Quaternion::normalize() { decimal l = length(); // Check if the length is not equal to zero assert (l > MACHINE_EPSILON); x /= l; y /= l; z /= l; w /= l; } // Inverse the quaternion inline void Quaternion::inverse() { // Get the square length of the quaternion decimal lengthSquareQuaternion = lengthSquare(); assert (lengthSquareQuaternion > MACHINE_EPSILON); // Compute and return the inverse quaternion x /= -lengthSquareQuaternion; y /= -lengthSquareQuaternion; z /= -lengthSquareQuaternion; w /= lengthSquareQuaternion; } // Return the unit quaternion inline Quaternion Quaternion::getUnit() const { decimal lengthQuaternion = length(); // Check if the length is not equal to zero assert (lengthQuaternion > MACHINE_EPSILON); // Compute and return the unit quaternion return Quaternion(x / lengthQuaternion, y / lengthQuaternion, z / lengthQuaternion, w / lengthQuaternion); } // Return the identity quaternion inline Quaternion Quaternion::identity() { return Quaternion(0.0, 0.0, 0.0, 1.0); } // Return the conjugate of the quaternion (inline) inline Quaternion Quaternion::getConjugate() const { return Quaternion(-x, -y, -z, w); } // Return the inverse of the quaternion (inline) inline Quaternion Quaternion::getInverse() const { decimal lengthSquareQuaternion = lengthSquare(); assert (lengthSquareQuaternion > MACHINE_EPSILON); // Compute and return the inverse quaternion return Quaternion(-x / lengthSquareQuaternion, -y / lengthSquareQuaternion, -z / lengthSquareQuaternion, w / lengthSquareQuaternion); } // Scalar product between two quaternions inline decimal Quaternion::dot(const Quaternion& quaternion) const { return (x*quaternion.x + y*quaternion.y + z*quaternion.z + w*quaternion.w); } // Overloaded operator for the addition of two quaternions inline Quaternion Quaternion::operator+(const Quaternion& quaternion) const { // Return the result quaternion return Quaternion(x + quaternion.x, y + quaternion.y, z + quaternion.z, w + quaternion.w); } // Overloaded operator for the substraction of two quaternions inline Quaternion Quaternion::operator-(const Quaternion& quaternion) const { // Return the result of the substraction return Quaternion(x - quaternion.x, y - quaternion.y, z - quaternion.z, w - quaternion.w); } // Overloaded operator for addition with assignment inline Quaternion& Quaternion::operator+=(const Quaternion& quaternion) { x += quaternion.x; y += quaternion.y; z += quaternion.z; w += quaternion.w; return *this; } // Overloaded operator for substraction with assignment inline Quaternion& Quaternion::operator-=(const Quaternion& quaternion) { x -= quaternion.x; y -= quaternion.y; z -= quaternion.z; w -= quaternion.w; return *this; } // Overloaded operator for the multiplication with a constant inline Quaternion Quaternion::operator*(decimal nb) const { return Quaternion(nb * x, nb * y, nb * z, nb * w); } // Overloaded operator for the multiplication of two quaternions inline Quaternion Quaternion::operator*(const Quaternion& quaternion) const { return Quaternion(w * quaternion.w - getVectorV().dot(quaternion.getVectorV()), w * quaternion.getVectorV() + quaternion.w * getVectorV() + getVectorV().cross(quaternion.getVectorV())); } // Overloaded operator for the multiplication with a vector. /// This methods rotates a point given the rotation of a quaternion. inline Vector3 Quaternion::operator*(const Vector3& point) const { Quaternion p(point.x, point.y, point.z, 0.0); return (((*this) * p) * getConjugate()).getVectorV(); } // Overloaded operator for the assignment inline Quaternion& Quaternion::operator=(const Quaternion& quaternion) { // Check for self-assignment if (this != &quaternion) { x = quaternion.x; y = quaternion.y; z = quaternion.z; w = quaternion.w; } // Return this quaternion return *this; } // Overloaded operator for equality condition inline bool Quaternion::operator==(const Quaternion& quaternion) const { return (x == quaternion.x && y == quaternion.y && z == quaternion.z && w == quaternion.w); } } #endif