/******************************************************************************** * ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ * * Copyright (c) 2010-2012 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ #ifndef CONSTRAINT_H #define CONSTRAINT_H // Libraries #include "../body/RigidBody.h" #include "../mathematics/mathematics.h" // ReactPhysics3D namespace namespace reactphysics3d { // Enumeration for the type of a constraint enum ConstraintType {CONTACT}; /* ------------------------------------------------------------------- Class Constraint : This abstract class represents a constraint in the physics engine. A constraint can be a collision contact or a joint for instance. Each constraint can be made of several "mathematical constraints" needed to represent the main constraint. ------------------------------------------------------------------- */ class Constraint { protected : // -------------------- Attributes -------------------- // // Pointer to the first body of the constraint RigidBody* const mBody1; // Pointer to the second body of the constraint RigidBody* const mBody2; // True if the constraint is active bool mActive; // Number mathematical constraints associated with this Constraint uint mNbConstraints; // Type of the constraint const ConstraintType mType; // Cached lambda values of each mathematical constraint for // more precise initializaton of LCP solver std::vector mCachedLambdas; // -------------------- Methods -------------------- // // Private copy-constructor Constraint(const Constraint& constraint); // Private assignment operator Constraint& operator=(const Constraint& constraint); public : // -------------------- Methods -------------------- // // Constructor Constraint(RigidBody* const body1, RigidBody* const body2, uint nbConstraints, bool active, ConstraintType type); // Destructor virtual ~Constraint(); // Return the reference to the body 1 RigidBody* const getBody1() const; // Return the reference to the body 2 RigidBody* const getBody2() const; // Return true if the constraint is active bool isActive() const; // Return the type of the constraint ConstraintType getType() const; // Return the number of mathematical constraints unsigned int getNbConstraints() const; // Get one cached lambda value decimal getCachedLambda(int index) const; // Set on cached lambda value void setCachedLambda(int index, decimal lambda); }; // Return the reference to the body 1 inline RigidBody* const Constraint::getBody1() const { return mBody1; } // Return the reference to the body 2 inline RigidBody* const Constraint::getBody2() const { return mBody2; } // Return true if the constraint is active inline bool Constraint::isActive() const { return mActive; } // Return the type of the constraint inline ConstraintType Constraint::getType() const { return mType; } // Return the number auxiliary constraints inline uint Constraint::getNbConstraints() const { return mNbConstraints; } // Get one previous lambda value inline decimal Constraint::getCachedLambda(int index) const { assert(index >= 0 && index < mNbConstraints); return mCachedLambdas[index]; } // Set on cached lambda value inline void Constraint::setCachedLambda(int index, decimal lambda) { assert(index >= 0 && index < mNbConstraints); mCachedLambdas[index] = lambda; } } #endif