/******************************************************************************** * ReactPhysics3D physics library, http://www.reactphysics3d.com * * Copyright (c) 2010-2016 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ // Libraries #include "FixedJoint.h" #include "engine/ConstraintSolver.h" using namespace reactphysics3d; // Static variables definition const decimal FixedJoint::BETA = decimal(0.2); // Constructor FixedJoint::FixedJoint(const FixedJointInfo& jointInfo) : Joint(jointInfo), mImpulseTranslation(0, 0, 0), mImpulseRotation(0, 0, 0) { // Compute the local-space anchor point for each body const Transform& transform1 = mBody1->getTransform(); const Transform& transform2 = mBody2->getTransform(); mLocalAnchorPointBody1 = transform1.getInverse() * jointInfo.anchorPointWorldSpace; mLocalAnchorPointBody2 = transform2.getInverse() * jointInfo.anchorPointWorldSpace; // Store inverse of initial rotation from body 1 to body 2 in body 1 space: // // q20 = q10 r0 // <=> r0 = q10^-1 q20 // <=> r0^-1 = q20^-1 q10 // // where: // // q20 = initial orientation of body 2 // q10 = initial orientation of body 1 // r0 = initial rotation rotation from body 1 to body 2 mInitOrientationDifferenceInv = transform2.getOrientation().getInverse() * transform1.getOrientation(); } // Initialize before solving the constraint void FixedJoint::initBeforeSolve(const ConstraintSolverData& constraintSolverData) { // Initialize the bodies index in the velocity array mIndexBody1 = constraintSolverData.mapBodyToConstrainedVelocityIndex.find(mBody1)->second; mIndexBody2 = constraintSolverData.mapBodyToConstrainedVelocityIndex.find(mBody2)->second; // Get the bodies positions and orientations const Vector3& x1 = mBody1->mCenterOfMassWorld; const Vector3& x2 = mBody2->mCenterOfMassWorld; const Quaternion& orientationBody1 = mBody1->getTransform().getOrientation(); const Quaternion& orientationBody2 = mBody2->getTransform().getOrientation(); // Get the inertia tensor of bodies mI1 = mBody1->getInertiaTensorInverseWorld(); mI2 = mBody2->getInertiaTensorInverseWorld(); // Compute the vector from body center to the anchor point in world-space mR1World = orientationBody1 * mLocalAnchorPointBody1; mR2World = orientationBody2 * mLocalAnchorPointBody2; // Compute the corresponding skew-symmetric matrices Matrix3x3 skewSymmetricMatrixU1= Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(mR1World); Matrix3x3 skewSymmetricMatrixU2= Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(mR2World); // Compute the matrix K=JM^-1J^t (3x3 matrix) for the 3 translation constraints decimal inverseMassBodies = mBody1->mMassInverse + mBody2->mMassInverse; Matrix3x3 massMatrix = Matrix3x3(inverseMassBodies, 0, 0, 0, inverseMassBodies, 0, 0, 0, inverseMassBodies) + skewSymmetricMatrixU1 * mI1 * skewSymmetricMatrixU1.getTranspose() + skewSymmetricMatrixU2 * mI2 * skewSymmetricMatrixU2.getTranspose(); // Compute the inverse mass matrix K^-1 for the 3 translation constraints mInverseMassMatrixTranslation.setToZero(); if (mBody1->getType() == BodyType::DYNAMIC || mBody2->getType() == BodyType::DYNAMIC) { mInverseMassMatrixTranslation = massMatrix.getInverse(); } // Compute the bias "b" of the constraint for the 3 translation constraints decimal biasFactor = (BETA / constraintSolverData.timeStep); mBiasTranslation.setToZero(); if (mPositionCorrectionTechnique == JointsPositionCorrectionTechnique::BAUMGARTE_JOINTS) { mBiasTranslation = biasFactor * (x2 + mR2World - x1 - mR1World); } // Compute the inverse of the mass matrix K=JM^-1J^t for the 3 rotation // contraints (3x3 matrix) mInverseMassMatrixRotation = mI1 + mI2; if (mBody1->getType() == BodyType::DYNAMIC || mBody2->getType() == BodyType::DYNAMIC) { mInverseMassMatrixRotation = mInverseMassMatrixRotation.getInverse(); } // Compute the bias "b" for the 3 rotation constraints mBiasRotation.setToZero(); if (mPositionCorrectionTechnique == JointsPositionCorrectionTechnique::BAUMGARTE_JOINTS) { const Quaternion qError = orientationBody2 * mInitOrientationDifferenceInv * orientationBody1.getInverse(); mBiasRotation = biasFactor * decimal(2.0) * qError.getVectorV(); } // If warm-starting is not enabled if (!constraintSolverData.isWarmStartingActive) { // Reset the accumulated impulses mImpulseTranslation.setToZero(); mImpulseRotation.setToZero(); } } // Warm start the constraint (apply the previous impulse at the beginning of the step) void FixedJoint::warmstart(const ConstraintSolverData& constraintSolverData) { // Get the velocities Vector3& v1 = constraintSolverData.linearVelocities[mIndexBody1]; Vector3& v2 = constraintSolverData.linearVelocities[mIndexBody2]; Vector3& w1 = constraintSolverData.angularVelocities[mIndexBody1]; Vector3& w2 = constraintSolverData.angularVelocities[mIndexBody2]; // Get the inverse mass of the bodies const decimal inverseMassBody1 = mBody1->mMassInverse; const decimal inverseMassBody2 = mBody2->mMassInverse; // Compute the impulse P=J^T * lambda for the 3 translation constraints for body 1 Vector3 linearImpulseBody1 = -mImpulseTranslation; Vector3 angularImpulseBody1 = mImpulseTranslation.cross(mR1World); // Compute the impulse P=J^T * lambda for the 3 rotation constraints for body 1 angularImpulseBody1 += -mImpulseRotation; // Apply the impulse to the body 1 v1 += inverseMassBody1 * linearImpulseBody1; w1 += mI1 * angularImpulseBody1; // Compute the impulse P=J^T * lambda for the 3 translation constraints for body 2 Vector3 angularImpulseBody2 = -mImpulseTranslation.cross(mR2World); // Compute the impulse P=J^T * lambda for the 3 rotation constraints for body 2 angularImpulseBody2 += mImpulseRotation; // Apply the impulse to the body 2 v2 += inverseMassBody2 * mImpulseTranslation; w2 += mI2 * angularImpulseBody2; } // Solve the velocity constraint void FixedJoint::solveVelocityConstraint(const ConstraintSolverData& constraintSolverData) { // Get the velocities Vector3& v1 = constraintSolverData.linearVelocities[mIndexBody1]; Vector3& v2 = constraintSolverData.linearVelocities[mIndexBody2]; Vector3& w1 = constraintSolverData.angularVelocities[mIndexBody1]; Vector3& w2 = constraintSolverData.angularVelocities[mIndexBody2]; // Get the inverse mass of the bodies decimal inverseMassBody1 = mBody1->mMassInverse; decimal inverseMassBody2 = mBody2->mMassInverse; // --------------- Translation Constraints --------------- // // Compute J*v for the 3 translation constraints const Vector3 JvTranslation = v2 + w2.cross(mR2World) - v1 - w1.cross(mR1World); // Compute the Lagrange multiplier lambda const Vector3 deltaLambda = mInverseMassMatrixTranslation * (-JvTranslation - mBiasTranslation); mImpulseTranslation += deltaLambda; // Compute the impulse P=J^T * lambda for body 1 const Vector3 linearImpulseBody1 = -deltaLambda; Vector3 angularImpulseBody1 = deltaLambda.cross(mR1World); // Apply the impulse to the body 1 v1 += inverseMassBody1 * linearImpulseBody1; w1 += mI1 * angularImpulseBody1; // Compute the impulse P=J^T * lambda for body 2 const Vector3 angularImpulseBody2 = -deltaLambda.cross(mR2World); // Apply the impulse to the body 2 v2 += inverseMassBody2 * deltaLambda; w2 += mI2 * angularImpulseBody2; // --------------- Rotation Constraints --------------- // // Compute J*v for the 3 rotation constraints const Vector3 JvRotation = w2 - w1; // Compute the Lagrange multiplier lambda for the 3 rotation constraints Vector3 deltaLambda2 = mInverseMassMatrixRotation * (-JvRotation - mBiasRotation); mImpulseRotation += deltaLambda2; // Compute the impulse P=J^T * lambda for the 3 rotation constraints for body 1 angularImpulseBody1 = -deltaLambda2; // Apply the impulse to the body 1 w1 += mI1 * angularImpulseBody1; // Apply the impulse to the body 2 w2 += mI2 * deltaLambda2; } // Solve the position constraint (for position error correction) void FixedJoint::solvePositionConstraint(const ConstraintSolverData& constraintSolverData) { // If the error position correction technique is not the non-linear-gauss-seidel, we do // do not execute this method if (mPositionCorrectionTechnique != JointsPositionCorrectionTechnique::NON_LINEAR_GAUSS_SEIDEL) return; // Get the bodies positions and orientations Vector3& x1 = constraintSolverData.positions[mIndexBody1]; Vector3& x2 = constraintSolverData.positions[mIndexBody2]; Quaternion& q1 = constraintSolverData.orientations[mIndexBody1]; Quaternion& q2 = constraintSolverData.orientations[mIndexBody2]; // Get the inverse mass and inverse inertia tensors of the bodies decimal inverseMassBody1 = mBody1->mMassInverse; decimal inverseMassBody2 = mBody2->mMassInverse; // Recompute the inverse inertia tensors mI1 = mBody1->getInertiaTensorInverseWorld(); mI2 = mBody2->getInertiaTensorInverseWorld(); // Compute the vector from body center to the anchor point in world-space mR1World = q1 * mLocalAnchorPointBody1; mR2World = q2 * mLocalAnchorPointBody2; // Compute the corresponding skew-symmetric matrices Matrix3x3 skewSymmetricMatrixU1= Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(mR1World); Matrix3x3 skewSymmetricMatrixU2= Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(mR2World); // --------------- Translation Constraints --------------- // // Compute the matrix K=JM^-1J^t (3x3 matrix) for the 3 translation constraints decimal inverseMassBodies = mBody1->mMassInverse + mBody2->mMassInverse; Matrix3x3 massMatrix = Matrix3x3(inverseMassBodies, 0, 0, 0, inverseMassBodies, 0, 0, 0, inverseMassBodies) + skewSymmetricMatrixU1 * mI1 * skewSymmetricMatrixU1.getTranspose() + skewSymmetricMatrixU2 * mI2 * skewSymmetricMatrixU2.getTranspose(); mInverseMassMatrixTranslation.setToZero(); if (mBody1->getType() == BodyType::DYNAMIC || mBody2->getType() == BodyType::DYNAMIC) { mInverseMassMatrixTranslation = massMatrix.getInverse(); } // Compute position error for the 3 translation constraints const Vector3 errorTranslation = x2 + mR2World - x1 - mR1World; // Compute the Lagrange multiplier lambda const Vector3 lambdaTranslation = mInverseMassMatrixTranslation * (-errorTranslation); // Compute the impulse of body 1 Vector3 linearImpulseBody1 = -lambdaTranslation; Vector3 angularImpulseBody1 = lambdaTranslation.cross(mR1World); // Compute the pseudo velocity of body 1 const Vector3 v1 = inverseMassBody1 * linearImpulseBody1; Vector3 w1 = mI1 * angularImpulseBody1; // Update the body position/orientation of body 1 x1 += v1; q1 += Quaternion(0, w1) * q1 * decimal(0.5); q1.normalize(); // Compute the impulse of body 2 Vector3 angularImpulseBody2 = -lambdaTranslation.cross(mR2World); // Compute the pseudo velocity of body 2 const Vector3 v2 = inverseMassBody2 * lambdaTranslation; Vector3 w2 = mI2 * angularImpulseBody2; // Update the body position/orientation of body 2 x2 += v2; q2 += Quaternion(0, w2) * q2 * decimal(0.5); q2.normalize(); // --------------- Rotation Constraints --------------- // // Compute the inverse of the mass matrix K=JM^-1J^t for the 3 rotation // contraints (3x3 matrix) mInverseMassMatrixRotation = mI1 + mI2; if (mBody1->getType() == BodyType::DYNAMIC || mBody2->getType() == BodyType::DYNAMIC) { mInverseMassMatrixRotation = mInverseMassMatrixRotation.getInverse(); } // Calculate difference in rotation // // The rotation should be: // // q2 = q1 r0 // // But because of drift the actual rotation is: // // q2 = qError q1 r0 // <=> qError = q2 r0^-1 q1^-1 // // Where: // q1 = current rotation of body 1 // q2 = current rotation of body 2 // qError = error that needs to be reduced to zero Quaternion qError = q2 * mInitOrientationDifferenceInv * q1.getInverse(); // A quaternion can be seen as: // // q = [sin(theta / 2) * v, cos(theta/2)] // // Where: // v = rotation vector // theta = rotation angle // // If we assume theta is small (error is small) then sin(x) = x so an approximation of the error angles is: const Vector3 errorRotation = decimal(2.0) * qError.getVectorV(); // Compute the Lagrange multiplier lambda for the 3 rotation constraints Vector3 lambdaRotation = mInverseMassMatrixRotation * (-errorRotation); // Compute the impulse P=J^T * lambda for the 3 rotation constraints of body 1 angularImpulseBody1 = -lambdaRotation; // Compute the pseudo velocity of body 1 w1 = mI1 * angularImpulseBody1; // Update the body position/orientation of body 1 q1 += Quaternion(0, w1) * q1 * decimal(0.5); q1.normalize(); // Compute the pseudo velocity of body 2 w2 = mI2 * lambdaRotation; // Update the body position/orientation of body 2 q2 += Quaternion(0, w2) * q2 * decimal(0.5); q2.normalize(); }