/******************************************************************************** * ReactPhysics3D physics library, http://www.reactphysics3d.com * * Copyright (c) 2010-2016 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ #ifndef REACTPHYSICS3D_COLLISION_DETECTION_H #define REACTPHYSICS3D_COLLISION_DETECTION_H // Libraries #include "body/CollisionBody.h" #include "broadphase/BroadPhaseAlgorithm.h" #include "engine/OverlappingPair.h" #include "engine/EventListener.h" #include "narrowphase/DefaultCollisionDispatch.h" #include "memory/PoolAllocator.h" #include "memory/SingleFrameAllocator.h" #include "constraint/ContactPoint.h" #include #include #include #include /// ReactPhysics3D namespace namespace reactphysics3d { // Declarations class BroadPhaseAlgorithm; class CollisionWorld; class CollisionCallback; class OverlapCallback; // Class CollisionDetection /** * This class computes the collision detection algorithms. We first * perform a broad-phase algorithm to know which pairs of bodies can * collide and then we run a narrow-phase algorithm to compute the * collision contacts between bodies. */ class CollisionDetection { private : // -------------------- Attributes -------------------- // /// Collision Detection Dispatch configuration CollisionDispatch* mCollisionDispatch; /// Default collision dispatch configuration DefaultCollisionDispatch mDefaultCollisionDispatch; /// Collision detection matrix (algorithms to use) NarrowPhaseAlgorithm* mCollisionMatrix[NB_COLLISION_SHAPE_TYPES][NB_COLLISION_SHAPE_TYPES]; /// Reference to the memory allocator PoolAllocator& mMemoryAllocator; /// Reference to the single frame memory allocator SingleFrameAllocator& mSingleFrameAllocator; /// Pointer to the physics world CollisionWorld* mWorld; /// Pointer to the first narrow-phase info of the linked list NarrowPhaseInfo* mNarrowPhaseInfoList; /// Broad-phase overlapping pairs std::map mOverlappingPairs; /// Overlapping pairs in contact (during the current Narrow-phase collision detection) std::map mContactOverlappingPairs; /// Broad-phase algorithm BroadPhaseAlgorithm mBroadPhaseAlgorithm; /// Narrow-phase GJK algorithm // TODO : Delete this GJKAlgorithm mNarrowPhaseGJKAlgorithm; // TODO : Maybe delete this set (what is the purpose ?) /// Set of pair of bodies that cannot collide between each other std::set mNoCollisionPairs; /// True if some collision shapes have been added previously bool mIsCollisionShapesAdded; // -------------------- Methods -------------------- // /// Compute the broad-phase collision detection void computeBroadPhase(); /// Compute the middle-phase collision detection void computeMiddlePhase(); /// Compute the narrow-phase collision detection void computeNarrowPhase(); /// Add a contact manifold to the linked list of contact manifolds of the two bodies /// involed in the corresponding contact. void addContactManifoldToBody(OverlappingPair* pair); /// Delete all the contact points in the currently overlapping pairs void clearContactPoints(); /// Fill-in the collision detection matrix void fillInCollisionMatrix(); /// Return the corresponding narrow-phase algorithm NarrowPhaseAlgorithm* selectNarrowPhaseAlgorithm(const CollisionShapeType& shape1Type, const CollisionShapeType& shape2Type) const; /// Add all the contact manifold of colliding pairs to their bodies void addAllContactManifoldsToBodies(); /// Compute the concave vs convex middle-phase algorithm for a given pair of bodies void computeConvexVsConcaveMiddlePhase(OverlappingPair* pair, Allocator& allocator, NarrowPhaseInfo** firstNarrowPhaseInfo); /// Compute the middle-phase collision detection between two proxy shapes NarrowPhaseInfo* computeMiddlePhaseForProxyShapes(ProxyShape* shape1, ProxyShape* shape2); public : // -------------------- Methods -------------------- // /// Constructor CollisionDetection(CollisionWorld* world, PoolAllocator& memoryAllocator, SingleFrameAllocator& singleFrameAllocator); /// Destructor ~CollisionDetection() = default; /// Deleted copy-constructor CollisionDetection(const CollisionDetection& collisionDetection) = delete; /// Deleted assignment operator CollisionDetection& operator=(const CollisionDetection& collisionDetection) = delete; /// Set the collision dispatch configuration void setCollisionDispatch(CollisionDispatch* collisionDispatch); /// Add a proxy collision shape to the collision detection void addProxyCollisionShape(ProxyShape* proxyShape, const AABB& aabb); /// Remove a proxy collision shape from the collision detection void removeProxyCollisionShape(ProxyShape* proxyShape); /// Update a proxy collision shape (that has moved for instance) void updateProxyCollisionShape(ProxyShape* shape, const AABB& aabb, const Vector3& displacement = Vector3(0, 0, 0), bool forceReinsert = false); /// Add a pair of bodies that cannot collide with each other void addNoCollisionPair(CollisionBody* body1, CollisionBody* body2); /// Remove a pair of bodies that cannot collide with each other void removeNoCollisionPair(CollisionBody* body1, CollisionBody* body2); /// Ask for a collision shape to be tested again during broad-phase. void askForBroadPhaseCollisionCheck(ProxyShape* shape); /// Compute the collision detection void computeCollisionDetection(); /// Ray casting method void raycast(RaycastCallback* raycastCallback, const Ray& ray, unsigned short raycastWithCategoryMaskBits) const; /// Report all the bodies that overlap with the aabb in parameter void testAABBOverlap(const AABB& aabb, OverlapCallback* overlapCallback, unsigned short categoryMaskBits = 0xFFFF); /// Return true if two bodies overlap bool testOverlap(CollisionBody* body1, CollisionBody* body2); /// Report all the bodies that overlap with the body in parameter void testOverlap(CollisionBody* body, OverlapCallback* overlapCallback, unsigned short categoryMaskBits = 0xFFFF); /// Test and report collisions between two bodies void testCollision(CollisionBody* body1, CollisionBody* body2, CollisionCallback* callback); /// Test and report collisions between a body and all the others bodies of the world void testCollision(CollisionBody* body, CollisionCallback* callback, unsigned short categoryMaskBits = 0xFFFF); /// Test and report collisions between all shapes of the world void testCollision(CollisionCallback* callback); /// Allow the broadphase to notify the collision detection about an overlapping pair. void broadPhaseNotifyOverlappingPair(ProxyShape* shape1, ProxyShape* shape2); /// Return a pointer to the world CollisionWorld* getWorld(); /// Return the world event listener EventListener* getWorldEventListener(); /// Return a reference to the world memory allocator PoolAllocator& getWorldMemoryAllocator(); // -------------------- Friendship -------------------- // friend class DynamicsWorld; friend class ConvexMeshShape; }; // Set the collision dispatch configuration inline void CollisionDetection::setCollisionDispatch(CollisionDispatch* collisionDispatch) { mCollisionDispatch = collisionDispatch; // Fill-in the collision matrix with the new algorithms to use fillInCollisionMatrix(); } // Add a body to the collision detection inline void CollisionDetection::addProxyCollisionShape(ProxyShape* proxyShape, const AABB& aabb) { // Add the body to the broad-phase mBroadPhaseAlgorithm.addProxyCollisionShape(proxyShape, aabb); mIsCollisionShapesAdded = true; } // Add a pair of bodies that cannot collide with each other inline void CollisionDetection::addNoCollisionPair(CollisionBody* body1, CollisionBody* body2) { mNoCollisionPairs.insert(OverlappingPair::computeBodiesIndexPair(body1, body2)); } // Remove a pair of bodies that cannot collide with each other inline void CollisionDetection::removeNoCollisionPair(CollisionBody* body1, CollisionBody* body2) { mNoCollisionPairs.erase(OverlappingPair::computeBodiesIndexPair(body1, body2)); } // Ask for a collision shape to be tested again during broad-phase. /// We simply put the shape in the list of collision shape that have moved in the /// previous frame so that it is tested for collision again in the broad-phase. inline void CollisionDetection::askForBroadPhaseCollisionCheck(ProxyShape* shape) { mBroadPhaseAlgorithm.addMovedCollisionShape(shape->mBroadPhaseID); } // Update a proxy collision shape (that has moved for instance) inline void CollisionDetection::updateProxyCollisionShape(ProxyShape* shape, const AABB& aabb, const Vector3& displacement, bool forceReinsert) { mBroadPhaseAlgorithm.updateProxyCollisionShape(shape, aabb, displacement); } // Return the corresponding narrow-phase algorithm inline NarrowPhaseAlgorithm* CollisionDetection::selectNarrowPhaseAlgorithm(const CollisionShapeType& shape1Type, const CollisionShapeType& shape2Type) const { const unsigned int shape1Index = static_cast(shape1Type); const unsigned int shape2Index = static_cast(shape2Type); assert(shape1Index <= shape2Index); return mCollisionMatrix[shape1Index][shape2Index]; } // Ray casting method inline void CollisionDetection::raycast(RaycastCallback* raycastCallback, const Ray& ray, unsigned short raycastWithCategoryMaskBits) const { PROFILE("CollisionDetection::raycast()"); RaycastTest rayCastTest(raycastCallback); // Ask the broad-phase algorithm to call the testRaycastAgainstShape() // callback method for each proxy shape hit by the ray in the broad-phase mBroadPhaseAlgorithm.raycast(ray, rayCastTest, raycastWithCategoryMaskBits); } // Return a pointer to the world inline CollisionWorld* CollisionDetection::getWorld() { return mWorld; } } #endif