/******************************************************************************** * ReactPhysics3D physics library, http://www.reactphysics3d.com * * Copyright (c) 2010-2018 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ #ifndef REACTPHYSICS3D_CONCAVE_MESH_SHAPE_H #define REACTPHYSICS3D_CONCAVE_MESH_SHAPE_H // Libraries #include "ConcaveShape.h" #include "collision/broadphase/DynamicAABBTree.h" #include "containers/List.h" namespace reactphysics3d { // Declarations class ConcaveMeshShape; class Profiler; class TriangleShape; class TriangleMesh; // class ConvexTriangleAABBOverlapCallback class ConvexTriangleAABBOverlapCallback : public DynamicAABBTreeOverlapCallback { private: TriangleCallback& mTriangleTestCallback; // Reference to the concave mesh shape const ConcaveMeshShape& mConcaveMeshShape; // Reference to the Dynamic AABB tree const DynamicAABBTree& mDynamicAABBTree; public: // Constructor ConvexTriangleAABBOverlapCallback(TriangleCallback& triangleCallback, const ConcaveMeshShape& concaveShape, const DynamicAABBTree& dynamicAABBTree) : mTriangleTestCallback(triangleCallback), mConcaveMeshShape(concaveShape), mDynamicAABBTree(dynamicAABBTree) { } // Called when a overlapping node has been found during the call to // DynamicAABBTree:reportAllShapesOverlappingWithAABB() virtual void notifyOverlappingNode(int nodeId) override; }; /// Class ConcaveMeshRaycastCallback class ConcaveMeshRaycastCallback : public DynamicAABBTreeRaycastCallback { private : List mHitAABBNodes; const DynamicAABBTree& mDynamicAABBTree; const ConcaveMeshShape& mConcaveMeshShape; ProxyShape* mProxyShape; RaycastInfo& mRaycastInfo; const Ray& mRay; bool mIsHit; MemoryAllocator& mAllocator; #ifdef IS_PROFILING_ACTIVE /// Pointer to the profiler Profiler* mProfiler; #endif public: // Constructor ConcaveMeshRaycastCallback(const DynamicAABBTree& dynamicAABBTree, const ConcaveMeshShape& concaveMeshShape, ProxyShape* proxyShape, RaycastInfo& raycastInfo, const Ray& ray, MemoryAllocator& allocator) : mHitAABBNodes(allocator), mDynamicAABBTree(dynamicAABBTree), mConcaveMeshShape(concaveMeshShape), mProxyShape(proxyShape), mRaycastInfo(raycastInfo), mRay(ray), mIsHit(false), mAllocator(allocator) { } /// Collect all the AABB nodes that are hit by the ray in the Dynamic AABB Tree virtual decimal raycastBroadPhaseShape(int32 nodeId, const Ray& ray) override; /// Raycast all collision shapes that have been collected void raycastTriangles(); /// Return true if a raycast hit has been found bool getIsHit() const { return mIsHit; } #ifdef IS_PROFILING_ACTIVE /// Set the profiler void setProfiler(Profiler* profiler) { mProfiler = profiler; } #endif }; // Class ConcaveMeshShape /** * This class represents a static concave mesh shape. Note that collision detection * with a concave mesh shape can be very expensive. You should only use * this shape for a static mesh. */ class ConcaveMeshShape : public ConcaveShape { protected: // -------------------- Attributes -------------------- // /// Triangle mesh TriangleMesh* mTriangleMesh; /// Dynamic AABB tree to accelerate collision with the triangles DynamicAABBTree mDynamicAABBTree; /// Array with computed vertices normals for each TriangleVertexArray of the triangle mesh (only /// if the user did not provide its own vertices normals) Vector3** mComputedVerticesNormals; /// Scaling const Vector3 mScaling; // -------------------- Methods -------------------- // /// Raycast method with feedback information virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape, MemoryAllocator& allocator) const override; /// Return the number of bytes used by the collision shape virtual size_t getSizeInBytes() const override; /// Insert all the triangles into the dynamic AABB tree void initBVHTree(); /// Return the three vertices coordinates (in the array outTriangleVertices) of a triangle void getTriangleVertices(uint subPart, uint triangleIndex, Vector3* outTriangleVertices) const; /// Return the three vertex normals (in the array outVerticesNormals) of a triangle void getTriangleVerticesNormals(uint subPart, uint triangleIndex, Vector3* outVerticesNormals) const; /// Return the indices of the three vertices of a given triangle in the array void getTriangleVerticesIndices(uint subPart, uint triangleIndex, uint* outVerticesIndices) const; /// Compute the shape Id for a given triangle of the mesh uint computeTriangleShapeId(uint subPart, uint triangleIndex) const; public: /// Constructor ConcaveMeshShape(TriangleMesh* triangleMesh, const Vector3& scaling = Vector3(1, 1, 1)); /// Destructor virtual ~ConcaveMeshShape() = default; /// Deleted copy-constructor ConcaveMeshShape(const ConcaveMeshShape& shape) = delete; /// Deleted assignment operator ConcaveMeshShape& operator=(const ConcaveMeshShape& shape) = delete; /// Return the scaling vector const Vector3& getScaling() const; /// Return the number of sub parts contained in this mesh uint getNbSubparts() const; /// Return the number of triangles in a sub part uint getNbTriangles(uint subPart) const; /// Return the triangle positions for a specific subpart and triangle index void getTriangleVertices(uint subPart, uint triangleIndex, Vector3* v1, Vector3* v2, Vector3* v3) const; /// Return the triangle normals for a specific subpart and triangle index void getTriangleVerticesNormals(uint subPart, uint triangleIndex, Vector3* n1, Vector3* n2, Vector3* n3) const; /// Return the local bounds of the shape in x, y and z directions. virtual void getLocalBounds(Vector3& min, Vector3& max) const override; /// Return the local inertia tensor of the collision shape virtual void computeLocalInertiaTensor(Matrix3x3& tensor, decimal mass) const override; /// Use a callback method on all triangles of the concave shape inside a given AABB virtual void testAllTriangles(TriangleCallback& callback, const AABB& localAABB) const override; /// Return the string representation of the shape virtual std::string to_string() const override; #ifdef IS_PROFILING_ACTIVE /// Set the profiler virtual void setProfiler(Profiler* profiler) override; #endif // ---------- Friendship ----------- // friend class ConvexTriangleAABBOverlapCallback; friend class ConcaveMeshRaycastCallback; }; // Return the number of bytes used by the collision shape inline size_t ConcaveMeshShape::getSizeInBytes() const { return sizeof(ConcaveMeshShape); } // Return the scaling vector inline const Vector3& ConcaveMeshShape::getScaling() const { return mScaling; } // Return the local bounds of the shape in x, y and z directions. // This method is used to compute the AABB of the box /** * @param min The minimum bounds of the shape in local-space coordinates * @param max The maximum bounds of the shape in local-space coordinates */ inline void ConcaveMeshShape::getLocalBounds(Vector3& min, Vector3& max) const { // Get the AABB of the whole tree AABB treeAABB = mDynamicAABBTree.getRootAABB(); min = treeAABB.getMin(); max = treeAABB.getMax(); } // Return the local inertia tensor of the shape /** * @param[out] tensor The 3x3 inertia tensor matrix of the shape in local-space * coordinates * @param mass Mass to use to compute the inertia tensor of the collision shape */ inline void ConcaveMeshShape::computeLocalInertiaTensor(Matrix3x3& tensor, decimal mass) const { // Default inertia tensor // Note that this is not very realistic for a concave triangle mesh. // However, in most cases, it will only be used static bodies and therefore, // the inertia tensor is not used. tensor.setAllValues(mass, 0, 0, 0, mass, 0, 0, 0, mass); } // Called when a overlapping node has been found during the call to // DynamicAABBTree:reportAllShapesOverlappingWithAABB() inline void ConvexTriangleAABBOverlapCallback::notifyOverlappingNode(int nodeId) { // Get the node data (triangle index and mesh subpart index) int32* data = mDynamicAABBTree.getNodeDataInt(nodeId); // Get the triangle vertices for this node from the concave mesh shape Vector3 trianglePoints[3]; mConcaveMeshShape.getTriangleVertices(data[0], data[1], trianglePoints); // Get the vertices normals of the triangle Vector3 verticesNormals[3]; mConcaveMeshShape.getTriangleVerticesNormals(data[0], data[1], verticesNormals); // Call the callback to test narrow-phase collision with this triangle mTriangleTestCallback.testTriangle(trianglePoints, verticesNormals, mConcaveMeshShape.computeTriangleShapeId(data[0], data[1])); } #ifdef IS_PROFILING_ACTIVE // Set the profiler inline void ConcaveMeshShape::setProfiler(Profiler* profiler) { CollisionShape::setProfiler(profiler); mDynamicAABBTree.setProfiler(profiler); } #endif } #endif