/******************************************************************************** * ReactPhysics3D physics library, http://www.reactphysics3d.com * * Copyright (c) 2010-2016 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ // Libraries #include "SATAlgorithm.h" #include "constraint/ContactPoint.h" #include "collision/PolyhedronMesh.h" #include "collision/shapes/CapsuleShape.h" #include "collision/shapes/SphereShape.h" #include "engine/OverlappingPair.h" #include "collision/shapes/TriangleShape.h" #include "configuration.h" #include "engine/Profiler.h" #include #include #include #include // We want to use the ReactPhysics3D namespace using namespace reactphysics3d; // Static variables initialization const decimal SATAlgorithm::SAME_SEPARATING_AXIS_BIAS = decimal(0.001); // Test collision between a sphere and a convex mesh bool SATAlgorithm::testCollisionSphereVsConvexPolyhedron(NarrowPhaseInfo* narrowPhaseInfo, bool reportContacts) const { PROFILE("SATAlgorithm::testCollisionSphereVsConvexPolyhedron()"); bool isSphereShape1 = narrowPhaseInfo->collisionShape1->getType() == CollisionShapeType::SPHERE; assert(narrowPhaseInfo->collisionShape1->getType() == CollisionShapeType::CONVEX_POLYHEDRON || narrowPhaseInfo->collisionShape2->getType() == CollisionShapeType::CONVEX_POLYHEDRON); assert(narrowPhaseInfo->collisionShape1->getType() == CollisionShapeType::SPHERE || narrowPhaseInfo->collisionShape2->getType() == CollisionShapeType::SPHERE); // Get the capsule collision shapes const SphereShape* sphere = static_cast(isSphereShape1 ? narrowPhaseInfo->collisionShape1 : narrowPhaseInfo->collisionShape2); const ConvexPolyhedronShape* polyhedron = static_cast(isSphereShape1 ? narrowPhaseInfo->collisionShape2 : narrowPhaseInfo->collisionShape1); const Transform& sphereToWorldTransform = isSphereShape1 ? narrowPhaseInfo->shape1ToWorldTransform : narrowPhaseInfo->shape2ToWorldTransform; const Transform& polyhedronToWorldTransform = isSphereShape1 ? narrowPhaseInfo->shape2ToWorldTransform : narrowPhaseInfo->shape1ToWorldTransform; // Get the transform from sphere local-space to polyhedron local-space const Transform worldToPolyhedronTransform = polyhedronToWorldTransform.getInverse(); const Transform sphereToPolyhedronSpaceTransform = worldToPolyhedronTransform * sphereToWorldTransform; // Transform the center of the sphere into the local-space of the convex polyhedron const Vector3 sphereCenter = sphereToPolyhedronSpaceTransform.getPosition(); // Minimum penetration depth decimal minPenetrationDepth = DECIMAL_LARGEST; uint minFaceIndex = 0; // For each face of the convex mesh for (uint f = 0; f < polyhedron->getNbFaces(); f++) { // Compute the penetration depth of the shapes along the face normal direction decimal penetrationDepth = computePolyhedronFaceVsSpherePenetrationDepth(f, polyhedron, sphere, sphereCenter); // If the penetration depth is negative, we have found a separating axis if (penetrationDepth <= decimal(0.0)) { return false; } // Check if we have found a new minimum penetration axis if (penetrationDepth < minPenetrationDepth) { minPenetrationDepth = penetrationDepth; minFaceIndex = f; } } if (reportContacts) { const Vector3 minFaceNormal = polyhedron->getFaceNormal(minFaceIndex); Vector3 normalWorld = -(polyhedronToWorldTransform.getOrientation() * minFaceNormal); Vector3 contactPointSphereLocal = sphereToWorldTransform.getInverse().getOrientation() * normalWorld * sphere->getRadius(); Vector3 contactPointPolyhedronLocal = sphereCenter + minFaceNormal * (minPenetrationDepth - sphere->getRadius()); // Compute smooth triangle mesh contact if one of the two collision shapes is a triangle TriangleShape::computeSmoothTriangleMeshContact(narrowPhaseInfo->collisionShape1, narrowPhaseInfo->collisionShape2, isSphereShape1 ? contactPointSphereLocal : contactPointPolyhedronLocal, isSphereShape1 ? contactPointPolyhedronLocal : contactPointSphereLocal, narrowPhaseInfo->shape1ToWorldTransform, narrowPhaseInfo->shape2ToWorldTransform, minPenetrationDepth, normalWorld); // Create the contact info object narrowPhaseInfo->addContactPoint(normalWorld, minPenetrationDepth, isSphereShape1 ? contactPointSphereLocal : contactPointPolyhedronLocal, isSphereShape1 ? contactPointPolyhedronLocal : contactPointSphereLocal); } return true; } // Compute the penetration depth between a face of the polyhedron and a sphere along the polyhedron face normal direction decimal SATAlgorithm::computePolyhedronFaceVsSpherePenetrationDepth(uint faceIndex, const ConvexPolyhedronShape* polyhedron, const SphereShape* sphere, const Vector3& sphereCenter) const { // Get the face HalfEdgeStructure::Face face = polyhedron->getFace(faceIndex); // Get the face normal const Vector3 faceNormal = polyhedron->getFaceNormal(faceIndex); Vector3 sphereCenterToFacePoint = polyhedron->getVertexPosition(face.faceVertices[0]) - sphereCenter; decimal penetrationDepth = sphereCenterToFacePoint.dot(faceNormal) + sphere->getRadius(); return penetrationDepth; } // Test collision between a capsule and a convex mesh bool SATAlgorithm::testCollisionCapsuleVsConvexPolyhedron(NarrowPhaseInfo* narrowPhaseInfo, bool reportContacts) const { PROFILE("SATAlgorithm::testCollisionCapsuleVsConvexPolyhedron()"); bool isCapsuleShape1 = narrowPhaseInfo->collisionShape1->getType() == CollisionShapeType::CAPSULE; assert(narrowPhaseInfo->collisionShape1->getType() == CollisionShapeType::CONVEX_POLYHEDRON || narrowPhaseInfo->collisionShape2->getType() == CollisionShapeType::CONVEX_POLYHEDRON); assert(narrowPhaseInfo->collisionShape1->getType() == CollisionShapeType::CAPSULE || narrowPhaseInfo->collisionShape2->getType() == CollisionShapeType::CAPSULE); // Get the collision shapes const CapsuleShape* capsuleShape = static_cast(isCapsuleShape1 ? narrowPhaseInfo->collisionShape1 : narrowPhaseInfo->collisionShape2); const ConvexPolyhedronShape* polyhedron = static_cast(isCapsuleShape1 ? narrowPhaseInfo->collisionShape2 : narrowPhaseInfo->collisionShape1); const Transform capsuleToWorld = isCapsuleShape1 ? narrowPhaseInfo->shape1ToWorldTransform : narrowPhaseInfo->shape2ToWorldTransform; const Transform polyhedronToWorld = isCapsuleShape1 ? narrowPhaseInfo->shape2ToWorldTransform : narrowPhaseInfo->shape1ToWorldTransform; const Transform polyhedronToCapsuleTransform = capsuleToWorld.getInverse() * polyhedronToWorld; // Compute the end-points of the inner segment of the capsule const Vector3 capsuleSegA(0, -capsuleShape->getHeight() * decimal(0.5), 0); const Vector3 capsuleSegB(0, capsuleShape->getHeight() * decimal(0.5), 0); const Vector3 capsuleSegmentAxis = capsuleSegB - capsuleSegA; // Minimum penetration depth decimal minPenetrationDepth = DECIMAL_LARGEST; uint minFaceIndex = 0; uint minEdgeIndex = 0; bool isMinPenetrationFaceNormal = false; Vector3 separatingAxisCapsuleSpace; Vector3 separatingPolyhedronEdgeVertex1; Vector3 separatingPolyhedronEdgeVertex2; // For each face of the convex mesh for (uint f = 0; f < polyhedron->getNbFaces(); f++) { Vector3 outFaceNormalCapsuleSpace; // Compute the penetration depth const decimal penetrationDepth = computePolyhedronFaceVsCapsulePenetrationDepth(f, polyhedron, capsuleShape, polyhedronToCapsuleTransform, outFaceNormalCapsuleSpace); // If the penetration depth is negative, we have found a separating axis if (penetrationDepth <= decimal(0.0)) { return false; } // Check if we have found a new minimum penetration axis if (penetrationDepth < minPenetrationDepth) { minPenetrationDepth = penetrationDepth; minFaceIndex = f; isMinPenetrationFaceNormal = true; separatingAxisCapsuleSpace = outFaceNormalCapsuleSpace; } } // For each direction that is the cross product of the capsule inner segment and an edge of the polyhedron for (uint e = 0; e < polyhedron->getNbHalfEdges(); e += 2) { // Get an edge from the polyhedron (convert it into the capsule local-space) HalfEdgeStructure::Edge edge = polyhedron->getHalfEdge(e); const Vector3 edgeVertex1 = polyhedron->getVertexPosition(edge.vertexIndex); const Vector3 edgeVertex2 = polyhedron->getVertexPosition(polyhedron->getHalfEdge(edge.nextEdgeIndex).vertexIndex); const Vector3 edgeDirectionCapsuleSpace = polyhedronToCapsuleTransform.getOrientation() * (edgeVertex2 - edgeVertex1); HalfEdgeStructure::Edge twinEdge = polyhedron->getHalfEdge(edge.twinEdgeIndex); const Vector3 adjacentFace1Normal = polyhedronToCapsuleTransform.getOrientation() * polyhedron->getFaceNormal(edge.faceIndex); const Vector3 adjacentFace2Normal = polyhedronToCapsuleTransform.getOrientation() * polyhedron->getFaceNormal(twinEdge.faceIndex); // Check using the Gauss Map if this edge cross product can be as separating axis if (isMinkowskiFaceCapsuleVsEdge(capsuleSegmentAxis, adjacentFace1Normal, adjacentFace2Normal)) { Vector3 outAxis; // Compute the penetration depth const decimal penetrationDepth = computeEdgeVsCapsuleInnerSegmentPenetrationDepth(polyhedron, capsuleShape, capsuleSegmentAxis, edgeVertex1, edgeDirectionCapsuleSpace, polyhedronToCapsuleTransform, outAxis); // If the penetration depth is negative, we have found a separating axis if (penetrationDepth <= decimal(0.0)) { return false; } // Check if we have found a new minimum penetration axis if (penetrationDepth < minPenetrationDepth) { minPenetrationDepth = penetrationDepth; minEdgeIndex = e; isMinPenetrationFaceNormal = false; separatingAxisCapsuleSpace = outAxis; separatingPolyhedronEdgeVertex1 = edgeVertex1; separatingPolyhedronEdgeVertex2 = edgeVertex2; } } } // Convert the inner capsule segment points into the polyhedron local-space const Transform capsuleToPolyhedronTransform = polyhedronToCapsuleTransform.getInverse(); const Vector3 capsuleSegAPolyhedronSpace = capsuleToPolyhedronTransform * capsuleSegA; const Vector3 capsuleSegBPolyhedronSpace = capsuleToPolyhedronTransform * capsuleSegB; Vector3 normalWorld = capsuleToWorld.getOrientation() * separatingAxisCapsuleSpace; const decimal capsuleRadius = capsuleShape->getRadius(); // If the separating axis is a face normal // We need to clip the inner capsule segment with the adjacent faces of the separating face if (isMinPenetrationFaceNormal) { if (reportContacts) { computeCapsulePolyhedronFaceContactPoints(minFaceIndex, capsuleRadius, polyhedron, minPenetrationDepth, polyhedronToCapsuleTransform, normalWorld, separatingAxisCapsuleSpace, capsuleSegAPolyhedronSpace, capsuleSegBPolyhedronSpace, narrowPhaseInfo, isCapsuleShape1); } } else { // The separating axis is the cross product of a polyhedron edge and the inner capsule segment if (reportContacts) { // Compute the closest points between the inner capsule segment and the // edge of the polyhedron in polyhedron local-space Vector3 closestPointPolyhedronEdge, closestPointCapsuleInnerSegment; computeClosestPointBetweenTwoSegments(capsuleSegAPolyhedronSpace, capsuleSegBPolyhedronSpace, separatingPolyhedronEdgeVertex1, separatingPolyhedronEdgeVertex2, closestPointCapsuleInnerSegment, closestPointPolyhedronEdge); // Project closest capsule inner segment point into the capsule bounds Vector3 contactPointCapsule = (polyhedronToCapsuleTransform * closestPointCapsuleInnerSegment) - separatingAxisCapsuleSpace * capsuleRadius; // Compute smooth triangle mesh contact if one of the two collision shapes is a triangle TriangleShape::computeSmoothTriangleMeshContact(narrowPhaseInfo->collisionShape1, narrowPhaseInfo->collisionShape2, isCapsuleShape1 ? contactPointCapsule : closestPointPolyhedronEdge, isCapsuleShape1 ? closestPointPolyhedronEdge : contactPointCapsule, narrowPhaseInfo->shape1ToWorldTransform, narrowPhaseInfo->shape2ToWorldTransform, minPenetrationDepth, normalWorld); // Create the contact point narrowPhaseInfo->addContactPoint(normalWorld, minPenetrationDepth, isCapsuleShape1 ? contactPointCapsule : closestPointPolyhedronEdge, isCapsuleShape1 ? closestPointPolyhedronEdge : contactPointCapsule); } } return true; } // Compute the penetration depth when the separating axis is the cross product of polyhedron edge and capsule inner segment decimal SATAlgorithm::computeEdgeVsCapsuleInnerSegmentPenetrationDepth(const ConvexPolyhedronShape* polyhedron, const CapsuleShape* capsule, const Vector3& capsuleSegmentAxis, const Vector3& edgeVertex1, const Vector3& edgeDirectionCapsuleSpace, const Transform& polyhedronToCapsuleTransform, Vector3& outAxis) const { decimal penetrationDepth = DECIMAL_LARGEST; // Compute the axis to test (cross product between capsule inner segment and polyhedron edge) outAxis = capsuleSegmentAxis.cross(edgeDirectionCapsuleSpace); // Skip separating axis test if polyhedron edge is parallel to the capsule inner segment if (outAxis.lengthSquare() >= decimal(0.00001)) { const Vector3 polyhedronCentroid = polyhedronToCapsuleTransform * polyhedron->getCentroid(); const Vector3 pointOnPolyhedronEdge = polyhedronToCapsuleTransform * edgeVertex1; // Swap axis direction if necessary such that it points out of the polyhedron if (outAxis.dot(pointOnPolyhedronEdge - polyhedronCentroid) < 0) { outAxis = -outAxis; } outAxis.normalize(); // Compute the penetration depth const Vector3 capsuleSupportPoint = capsule->getLocalSupportPointWithMargin(-outAxis, nullptr); const Vector3 capsuleSupportPointToEdgePoint = pointOnPolyhedronEdge - capsuleSupportPoint; penetrationDepth = capsuleSupportPointToEdgePoint.dot(outAxis); } return penetrationDepth; } // Compute the penetration depth between the face of a polyhedron and a capsule along the polyhedron face normal direction decimal SATAlgorithm::computePolyhedronFaceVsCapsulePenetrationDepth(uint polyhedronFaceIndex, const ConvexPolyhedronShape* polyhedron, const CapsuleShape* capsule, const Transform& polyhedronToCapsuleTransform, Vector3& outFaceNormalCapsuleSpace) const { // Get the face HalfEdgeStructure::Face face = polyhedron->getFace(polyhedronFaceIndex); // Get the face normal const Vector3 faceNormal = polyhedron->getFaceNormal(polyhedronFaceIndex); // Compute the penetration depth (using the capsule support in the direction opposite to the face normal) outFaceNormalCapsuleSpace = polyhedronToCapsuleTransform.getOrientation() * faceNormal; const Vector3 capsuleSupportPoint = capsule->getLocalSupportPointWithMargin(-outFaceNormalCapsuleSpace, nullptr); const Vector3 pointOnPolyhedronFace = polyhedronToCapsuleTransform * polyhedron->getVertexPosition(face.faceVertices[0]); const Vector3 capsuleSupportPointToFacePoint = pointOnPolyhedronFace - capsuleSupportPoint; const decimal penetrationDepth = capsuleSupportPointToFacePoint.dot(outFaceNormalCapsuleSpace); return penetrationDepth; } // Compute the two contact points between a polyhedron and a capsule when the separating // axis is a face normal of the polyhedron void SATAlgorithm::computeCapsulePolyhedronFaceContactPoints(uint referenceFaceIndex, decimal capsuleRadius, const ConvexPolyhedronShape* polyhedron, decimal penetrationDepth, const Transform& polyhedronToCapsuleTransform, Vector3& normalWorld, const Vector3& separatingAxisCapsuleSpace, const Vector3& capsuleSegAPolyhedronSpace, const Vector3& capsuleSegBPolyhedronSpace, NarrowPhaseInfo* narrowPhaseInfo, bool isCapsuleShape1) const { HalfEdgeStructure::Face face = polyhedron->getFace(referenceFaceIndex); uint firstEdgeIndex = face.edgeIndex; uint edgeIndex = firstEdgeIndex; std::vector planesPoints; std::vector planesNormals; // For each adjacent edge of the separating face of the polyhedron do { HalfEdgeStructure::Edge edge = polyhedron->getHalfEdge(edgeIndex); HalfEdgeStructure::Edge twinEdge = polyhedron->getHalfEdge(edge.twinEdgeIndex); // Construct a clippling plane for each adjacent edge of the separting face of the polyhedron planesPoints.push_back(polyhedron->getVertexPosition(edge.vertexIndex)); planesNormals.push_back(-polyhedron->getFaceNormal(twinEdge.faceIndex)); edgeIndex = edge.nextEdgeIndex; } while(edgeIndex != firstEdgeIndex); // First we clip the inner segment of the capsule with the four planes of the adjacent faces std::vector clipSegment = clipSegmentWithPlanes(capsuleSegAPolyhedronSpace, capsuleSegBPolyhedronSpace, planesPoints, planesNormals); assert(clipSegment.size() == 2); const Vector3 faceNormal = polyhedron->getFaceNormal(referenceFaceIndex); // Project the two clipped points into the polyhedron face const Vector3 delta = faceNormal * (penetrationDepth - capsuleRadius); // For each of the two clipped points for (int i = 0; i<2; i++) { // Compute the penetration depth of the two clipped points (to filter out the points that does not correspond to the penetration depth) const decimal clipPointPenDepth = (planesPoints[0] - clipSegment[i]).dot(faceNormal); // If the clipped point is one that produce this penetration depth, we keep it if (clipPointPenDepth > penetrationDepth - capsuleRadius - decimal(0.001)) { Vector3 contactPointPolyhedron = clipSegment[i] + delta; // Project the clipped point into the capsule bounds Vector3 contactPointCapsule = (polyhedronToCapsuleTransform * clipSegment[i]) - separatingAxisCapsuleSpace * capsuleRadius; if (isCapsuleShape1) { normalWorld = -normalWorld; } // Compute smooth triangle mesh contact if one of the two collision shapes is a triangle TriangleShape::computeSmoothTriangleMeshContact(narrowPhaseInfo->collisionShape1, narrowPhaseInfo->collisionShape2, isCapsuleShape1 ? contactPointCapsule : contactPointPolyhedron, isCapsuleShape1 ? contactPointPolyhedron : contactPointCapsule, narrowPhaseInfo->shape1ToWorldTransform, narrowPhaseInfo->shape2ToWorldTransform, penetrationDepth, normalWorld); // Create the contact point narrowPhaseInfo->addContactPoint(normalWorld, penetrationDepth, isCapsuleShape1 ? contactPointCapsule : contactPointPolyhedron, isCapsuleShape1 ? contactPointPolyhedron : contactPointCapsule); } } } // This method returns true if an edge of a polyhedron and a capsule forms a // face of the Minkowski Difference. This test is used to know if two edges // (one edge of the polyhedron vs the inner segment of the capsule in this case) // have to be test as a possible separating axis bool SATAlgorithm::isMinkowskiFaceCapsuleVsEdge(const Vector3& capsuleSegment, const Vector3& edgeAdjacentFace1Normal, const Vector3& edgeAdjacentFace2Normal) const { // Return true if the arc on the Gauss Map corresponding to the polyhedron edge // intersect the unit circle plane corresponding to capsule Gauss Map return capsuleSegment.dot(edgeAdjacentFace1Normal) * capsuleSegment.dot(edgeAdjacentFace2Normal) < decimal(0.0); } // Test collision between two convex polyhedrons bool SATAlgorithm::testCollisionConvexPolyhedronVsConvexPolyhedron(NarrowPhaseInfo* narrowPhaseInfo, bool reportContacts) const { PROFILE("SATAlgorithm::testCollisionConvexPolyhedronVsConvexPolyhedron()"); assert(narrowPhaseInfo->collisionShape1->getType() == CollisionShapeType::CONVEX_POLYHEDRON); assert(narrowPhaseInfo->collisionShape2->getType() == CollisionShapeType::CONVEX_POLYHEDRON); const ConvexPolyhedronShape* polyhedron1 = static_cast(narrowPhaseInfo->collisionShape1); const ConvexPolyhedronShape* polyhedron2 = static_cast(narrowPhaseInfo->collisionShape2); const Transform polyhedron1ToPolyhedron2 = narrowPhaseInfo->shape2ToWorldTransform.getInverse() * narrowPhaseInfo->shape1ToWorldTransform; const Transform polyhedron2ToPolyhedron1 = polyhedron1ToPolyhedron2.getInverse(); decimal minPenetrationDepth = DECIMAL_LARGEST; uint minFaceIndex = 0; bool isMinPenetrationFaceNormal = false; bool isMinPenetrationFaceNormalPolyhedron1 = false; uint minSeparatingEdge1Index, minSeparatingEdge2Index; Vector3 separatingEdge1A, separatingEdge1B; Vector3 separatingEdge2A, separatingEdge2B; Vector3 minEdgeVsEdgeSeparatingAxisPolyhedron2Space; LastFrameCollisionInfo& lastFrameInfo = narrowPhaseInfo->overlappingPair->getLastFrameCollisionInfo(); // True if the shapes were overlapping in the previous frame and are // still overlapping on the same axis in this frame bool isTemporalCoherenceValid = false; // If the shapes are not triangles (no temporal coherence for triangle collision because we do not store previous // frame collision data per triangle) if (polyhedron1->getName() != CollisionShapeName::TRIANGLE && polyhedron2->getName() != CollisionShapeName::TRIANGLE) { // If the last frame collision info is valid and was also using SAT algorithm if (lastFrameInfo.isValid && lastFrameInfo.wasUsingSAT) { // We perform temporal coherence, we check if there is still an overlapping along the previous minimum separating // axis. If it is the case, we directly report the collision without executing the whole SAT algorithm again. If // the shapes are still separated along this axis, we directly exit with no collision. // If the previous separating axis (or axis with minimum penetration depth) // was a face normal of polyhedron 1 if (lastFrameInfo.satIsAxisFacePolyhedron1) { decimal penetrationDepth = testSingleFaceDirectionPolyhedronVsPolyhedron(polyhedron1, polyhedron2, polyhedron1ToPolyhedron2, lastFrameInfo.satMinAxisFaceIndex); // If the previous axis is a separating axis if (penetrationDepth <= decimal(0.0)) { // Return no collision return false; } // The two shapes are overlapping as in the previous frame and on the same axis, therefore // we will skip the entire SAT algorithm because the minimum separating axis did not change isTemporalCoherenceValid = lastFrameInfo.wasColliding; if (isTemporalCoherenceValid) { minPenetrationDepth = penetrationDepth; minFaceIndex = lastFrameInfo.satMinAxisFaceIndex; isMinPenetrationFaceNormal = true; isMinPenetrationFaceNormalPolyhedron1 = true; // Compute the contact points between two faces of two convex polyhedra. // If contact points have been found, we report them without running the whole SAT algorithm if(computePolyhedronVsPolyhedronFaceContactPoints(isMinPenetrationFaceNormalPolyhedron1, polyhedron1, polyhedron2, polyhedron1ToPolyhedron2, polyhedron2ToPolyhedron1, minFaceIndex, narrowPhaseInfo, minPenetrationDepth)) { lastFrameInfo.satIsAxisFacePolyhedron1 = isMinPenetrationFaceNormalPolyhedron1; lastFrameInfo.satIsAxisFacePolyhedron2 = !isMinPenetrationFaceNormalPolyhedron1; lastFrameInfo.satMinAxisFaceIndex = minFaceIndex; return true; } else { // Contact points have not been found (the set of clipped points was empty) // Therefore, we need to run the whole SAT algorithm again isTemporalCoherenceValid = false; } } } else if (lastFrameInfo.satIsAxisFacePolyhedron2) { // If the previous separating axis (or axis with minimum penetration depth) // was a face normal of polyhedron 2 decimal penetrationDepth = testSingleFaceDirectionPolyhedronVsPolyhedron(polyhedron2, polyhedron1, polyhedron2ToPolyhedron1, lastFrameInfo.satMinAxisFaceIndex); // If the previous axis is a separating axis if (penetrationDepth <= decimal(0.0)) { // Return no collision return false; } // The two shapes are overlapping as in the previous frame and on the same axis, therefore // we will skip the entire SAT algorithm because the minimum separating axis did not change isTemporalCoherenceValid = lastFrameInfo.wasColliding; if (isTemporalCoherenceValid) { minPenetrationDepth = penetrationDepth; minFaceIndex = lastFrameInfo.satMinAxisFaceIndex; isMinPenetrationFaceNormal = true; isMinPenetrationFaceNormalPolyhedron1 = false; // Compute the contact points between two faces of two convex polyhedra. // If contact points have been found, we report them without running the whole SAT algorithm if(computePolyhedronVsPolyhedronFaceContactPoints(isMinPenetrationFaceNormalPolyhedron1, polyhedron1, polyhedron2, polyhedron1ToPolyhedron2, polyhedron2ToPolyhedron1, minFaceIndex, narrowPhaseInfo, minPenetrationDepth)) { lastFrameInfo.satIsAxisFacePolyhedron1 = isMinPenetrationFaceNormalPolyhedron1; lastFrameInfo.satIsAxisFacePolyhedron2 = !isMinPenetrationFaceNormalPolyhedron1; lastFrameInfo.satMinAxisFaceIndex = minFaceIndex; return true; } else { // Contact points have not been found (the set of clipped points was empty) // Therefore, we need to run the whole SAT algorithm again isTemporalCoherenceValid = false; } } } else { // If the previous separating axis (or axis with minimum penetration depth) was the cross product of two edges HalfEdgeStructure::Edge edge1 = polyhedron1->getHalfEdge(lastFrameInfo.satMinEdge1Index); HalfEdgeStructure::Edge edge2 = polyhedron2->getHalfEdge(lastFrameInfo.satMinEdge2Index); Vector3 separatingAxisPolyhedron2Space; const Vector3 edge1A = polyhedron1ToPolyhedron2 * polyhedron1->getVertexPosition(edge1.vertexIndex); const Vector3 edge1B = polyhedron1ToPolyhedron2 * polyhedron1->getVertexPosition(polyhedron1->getHalfEdge(edge1.nextEdgeIndex).vertexIndex); const Vector3 edge1Direction = edge1B - edge1A; const Vector3 edge2A = polyhedron2->getVertexPosition(edge2.vertexIndex); const Vector3 edge2B = polyhedron2->getVertexPosition(polyhedron2->getHalfEdge(edge2.nextEdgeIndex).vertexIndex); const Vector3 edge2Direction = edge2B - edge2A; // Compute the penetration depth decimal penetrationDepth = computeDistanceBetweenEdges(edge1A, edge2A, polyhedron2->getCentroid(), edge1Direction, edge2Direction, separatingAxisPolyhedron2Space); // If the previous axis is a separating axis if (penetrationDepth <= decimal(0.0)) { // Return no collision return false; } // The two shapes are overlapping as in the previous frame and on the same axis, therefore // we will skip the entire SAT algorithm because the minimum separating axis did not change isTemporalCoherenceValid = lastFrameInfo.wasColliding; // Temporal coherence is valid only if the two edges build a minkowski // face (and the cross product is therefore a candidate for separating axis if (isTemporalCoherenceValid && !testEdgesBuildMinkowskiFace(polyhedron1, edge1, polyhedron2, edge2, polyhedron1ToPolyhedron2)) { isTemporalCoherenceValid = false; } if (isTemporalCoherenceValid) { minPenetrationDepth = penetrationDepth; isMinPenetrationFaceNormal = false; isMinPenetrationFaceNormalPolyhedron1 = false; minSeparatingEdge1Index = lastFrameInfo.satMinEdge1Index; minSeparatingEdge2Index = lastFrameInfo.satMinEdge2Index; separatingEdge1A = edge1A; separatingEdge1B = edge1B; separatingEdge2A = edge2A; separatingEdge2B = edge2B; minEdgeVsEdgeSeparatingAxisPolyhedron2Space = separatingAxisPolyhedron2Space; } } } } // We the shapes are still overlapping in the same axis as in // the previous frame, we skip the whole SAT algorithm if (!isTemporalCoherenceValid) { // Test all the face normals of the polyhedron 1 for separating axis uint faceIndex; decimal penetrationDepth = testFacesDirectionPolyhedronVsPolyhedron(polyhedron1, polyhedron2, polyhedron1ToPolyhedron2, faceIndex); if (penetrationDepth <= decimal(0.0)) { lastFrameInfo.satIsAxisFacePolyhedron1 = true; lastFrameInfo.satIsAxisFacePolyhedron2 = false; lastFrameInfo.satMinAxisFaceIndex = faceIndex; // We have found a separating axis return false; } if (penetrationDepth < minPenetrationDepth - SAME_SEPARATING_AXIS_BIAS) { isMinPenetrationFaceNormal = true; minPenetrationDepth = penetrationDepth; minFaceIndex = faceIndex; isMinPenetrationFaceNormalPolyhedron1 = true; } // Test all the face normals of the polyhedron 2 for separating axis penetrationDepth = testFacesDirectionPolyhedronVsPolyhedron(polyhedron2, polyhedron1, polyhedron2ToPolyhedron1, faceIndex); if (penetrationDepth <= decimal(0.0)) { lastFrameInfo.satIsAxisFacePolyhedron1 = false; lastFrameInfo.satIsAxisFacePolyhedron2 = true; lastFrameInfo.satMinAxisFaceIndex = faceIndex; // We have found a separating axis return false; } if (penetrationDepth < minPenetrationDepth - SAME_SEPARATING_AXIS_BIAS) { isMinPenetrationFaceNormal = true; minPenetrationDepth = penetrationDepth; minFaceIndex = faceIndex; isMinPenetrationFaceNormalPolyhedron1 = false; } // Test the cross products of edges of polyhedron 1 with edges of polyhedron 2 for separating axis for (uint i=0; i < polyhedron1->getNbHalfEdges(); i += 2) { // Get an edge of polyhedron 1 HalfEdgeStructure::Edge edge1 = polyhedron1->getHalfEdge(i); const Vector3 edge1A = polyhedron1ToPolyhedron2 * polyhedron1->getVertexPosition(edge1.vertexIndex); const Vector3 edge1B = polyhedron1ToPolyhedron2 * polyhedron1->getVertexPosition(polyhedron1->getHalfEdge(edge1.nextEdgeIndex).vertexIndex); const Vector3 edge1Direction = edge1B - edge1A; for (uint j=0; j < polyhedron2->getNbHalfEdges(); j += 2) { // Get an edge of polyhedron 2 HalfEdgeStructure::Edge edge2 = polyhedron2->getHalfEdge(j); const Vector3 edge2A = polyhedron2->getVertexPosition(edge2.vertexIndex); const Vector3 edge2B = polyhedron2->getVertexPosition(polyhedron2->getHalfEdge(edge2.nextEdgeIndex).vertexIndex); const Vector3 edge2Direction = edge2B - edge2A; // If the two edges build a minkowski face (and the cross product is // therefore a candidate for separating axis if (testEdgesBuildMinkowskiFace(polyhedron1, edge1, polyhedron2, edge2, polyhedron1ToPolyhedron2)) { Vector3 separatingAxisPolyhedron2Space; // Compute the penetration depth decimal penetrationDepth = computeDistanceBetweenEdges(edge1A, edge2A, polyhedron2->getCentroid(), edge1Direction, edge2Direction, separatingAxisPolyhedron2Space); if (penetrationDepth <= decimal(0.0)) { lastFrameInfo.satIsAxisFacePolyhedron1 = false; lastFrameInfo.satIsAxisFacePolyhedron2 = false; lastFrameInfo.satMinEdge1Index = i; lastFrameInfo.satMinEdge2Index = j; // We have found a separating axis return false; } if (penetrationDepth < minPenetrationDepth - SAME_SEPARATING_AXIS_BIAS) { minPenetrationDepth = penetrationDepth; isMinPenetrationFaceNormalPolyhedron1 = false; isMinPenetrationFaceNormal = false; minSeparatingEdge1Index = i; minSeparatingEdge2Index = j; separatingEdge1A = edge1A; separatingEdge1B = edge1B; separatingEdge2A = edge2A; separatingEdge2B = edge2B; minEdgeVsEdgeSeparatingAxisPolyhedron2Space = separatingAxisPolyhedron2Space; } } } } } // Here we know the shapes are overlapping on a given minimum separating axis. // Now, we will clip the shapes along this axis to find the contact points assert(minPenetrationDepth > decimal(0.0)); assert((isMinPenetrationFaceNormal && minFaceIndex >= 0) || !isMinPenetrationFaceNormal); // If the minimum separating axis is a face normal if (isMinPenetrationFaceNormal) { if (reportContacts) { // Compute the contact points between two faces of two convex polyhedra. bool contactsFound = computePolyhedronVsPolyhedronFaceContactPoints(isMinPenetrationFaceNormalPolyhedron1, polyhedron1, polyhedron2, polyhedron1ToPolyhedron2, polyhedron2ToPolyhedron1, minFaceIndex, narrowPhaseInfo, minPenetrationDepth); assert(contactsFound); } lastFrameInfo.satIsAxisFacePolyhedron1 = isMinPenetrationFaceNormalPolyhedron1; lastFrameInfo.satIsAxisFacePolyhedron2 = !isMinPenetrationFaceNormalPolyhedron1; lastFrameInfo.satMinAxisFaceIndex = minFaceIndex; } else { // If we have an edge vs edge contact if (reportContacts) { // Compute the closest points between the two edges (in the local-space of poylhedron 2) Vector3 closestPointPolyhedron1Edge, closestPointPolyhedron2Edge; computeClosestPointBetweenTwoSegments(separatingEdge1A, separatingEdge1B, separatingEdge2A, separatingEdge2B, closestPointPolyhedron1Edge, closestPointPolyhedron2Edge); // Compute the contact point on polyhedron 1 edge in the local-space of polyhedron 1 Vector3 closestPointPolyhedron1EdgeLocalSpace = polyhedron2ToPolyhedron1 * closestPointPolyhedron1Edge; // Compute the world normal Vector3 normalWorld = narrowPhaseInfo->shape2ToWorldTransform.getOrientation() * minEdgeVsEdgeSeparatingAxisPolyhedron2Space; // Compute smooth triangle mesh contact if one of the two collision shapes is a triangle TriangleShape::computeSmoothTriangleMeshContact(narrowPhaseInfo->collisionShape1, narrowPhaseInfo->collisionShape2, closestPointPolyhedron1EdgeLocalSpace, closestPointPolyhedron2Edge, narrowPhaseInfo->shape1ToWorldTransform, narrowPhaseInfo->shape2ToWorldTransform, minPenetrationDepth, normalWorld); // Create the contact point narrowPhaseInfo->addContactPoint(normalWorld, minPenetrationDepth, closestPointPolyhedron1EdgeLocalSpace, closestPointPolyhedron2Edge); } lastFrameInfo.satIsAxisFacePolyhedron1 = false; lastFrameInfo.satIsAxisFacePolyhedron2 = false; lastFrameInfo.satMinEdge1Index = minSeparatingEdge1Index; lastFrameInfo.satMinEdge2Index = minSeparatingEdge2Index; } return true; } // Compute the contact points between two faces of two convex polyhedra. /// The method returns true if contact points have been found bool SATAlgorithm::computePolyhedronVsPolyhedronFaceContactPoints(bool isMinPenetrationFaceNormalPolyhedron1, const ConvexPolyhedronShape* polyhedron1, const ConvexPolyhedronShape* polyhedron2, const Transform& polyhedron1ToPolyhedron2, const Transform& polyhedron2ToPolyhedron1, uint minFaceIndex, NarrowPhaseInfo* narrowPhaseInfo, decimal minPenetrationDepth) const { const ConvexPolyhedronShape* referencePolyhedron = isMinPenetrationFaceNormalPolyhedron1 ? polyhedron1 : polyhedron2; const ConvexPolyhedronShape* incidentPolyhedron = isMinPenetrationFaceNormalPolyhedron1 ? polyhedron2 : polyhedron1; const Transform& referenceToIncidentTransform = isMinPenetrationFaceNormalPolyhedron1 ? polyhedron1ToPolyhedron2 : polyhedron2ToPolyhedron1; const Transform& incidentToReferenceTransform = isMinPenetrationFaceNormalPolyhedron1 ? polyhedron2ToPolyhedron1 : polyhedron1ToPolyhedron2; assert(minPenetrationDepth > decimal(0.0)); const Vector3 axisReferenceSpace = referencePolyhedron->getFaceNormal(minFaceIndex); const Vector3 axisIncidentSpace = referenceToIncidentTransform.getOrientation() * axisReferenceSpace; // Compute the world normal Vector3 normalWorld = isMinPenetrationFaceNormalPolyhedron1 ? narrowPhaseInfo->shape1ToWorldTransform.getOrientation() * axisReferenceSpace : -(narrowPhaseInfo->shape2ToWorldTransform.getOrientation() * axisReferenceSpace); // Get the reference face HalfEdgeStructure::Face referenceFace = referencePolyhedron->getFace(minFaceIndex); // Find the incident face on the other polyhedron (most anti-parallel face) uint incidentFaceIndex = findMostAntiParallelFaceOnPolyhedron(incidentPolyhedron, axisIncidentSpace); // Get the incident face HalfEdgeStructure::Face incidentFace = incidentPolyhedron->getFace(incidentFaceIndex); std::vector polygonVertices; // Vertices to clip of the incident face std::vector planesNormals; // Normals of the clipping planes std::vector planesPoints; // Points on the clipping planes // Get all the vertices of the incident face (in the reference local-space) std::vector::const_iterator it; for (it = incidentFace.faceVertices.begin(); it != incidentFace.faceVertices.end(); ++it) { const Vector3 faceVertexIncidentSpace = incidentPolyhedron->getVertexPosition(*it); polygonVertices.push_back(incidentToReferenceTransform * faceVertexIncidentSpace); } // Get the reference face clipping planes uint currentEdgeIndex = referenceFace.edgeIndex; uint firstEdgeIndex = currentEdgeIndex; do { // Get the adjacent edge HalfEdgeStructure::Edge edge = referencePolyhedron->getHalfEdge(currentEdgeIndex); // Get the twin edge HalfEdgeStructure::Edge twinEdge = referencePolyhedron->getHalfEdge(edge.twinEdgeIndex); // Compute the edge vertices and edge direction Vector3 edgeV1 = referencePolyhedron->getVertexPosition(edge.vertexIndex); Vector3 edgeV2 = referencePolyhedron->getVertexPosition(twinEdge.vertexIndex); Vector3 edgeDirection = edgeV2 - edgeV1; // Compute the normal of the clipping plane for this edge // The clipping plane is perpendicular to the edge direction and the reference face normal Vector3 clipPlaneNormal = axisReferenceSpace.cross(edgeDirection); planesNormals.push_back(clipPlaneNormal); planesPoints.push_back(edgeV1); // Go to the next adjacent edge of the reference face currentEdgeIndex = edge.nextEdgeIndex; } while (currentEdgeIndex != firstEdgeIndex); assert(planesNormals.size() > 0); assert(planesNormals.size() == planesPoints.size()); // Clip the reference faces with the adjacent planes of the reference face std::vector clipPolygonVertices = clipPolygonWithPlanes(polygonVertices, planesPoints, planesNormals); assert(clipPolygonVertices.size() > 0); // We only keep the clipped points that are below the reference face const Vector3 referenceFaceVertex = referencePolyhedron->getVertexPosition(referencePolyhedron->getHalfEdge(firstEdgeIndex).vertexIndex); std::vector::const_iterator itPoints; bool contactPointsFound = false; for (itPoints = clipPolygonVertices.begin(); itPoints != clipPolygonVertices.end(); ++itPoints) { // If the clip point is bellow the reference face if (((*itPoints) - referenceFaceVertex).dot(axisReferenceSpace) < decimal(0.0)) { contactPointsFound = true; // Convert the clip incident polyhedron vertex into the incident polyhedron local-space Vector3 contactPointIncidentPolyhedron = referenceToIncidentTransform * (*itPoints); // Project the contact point onto the reference face Vector3 contactPointReferencePolyhedron = projectPointOntoPlane(*itPoints, axisReferenceSpace, referenceFaceVertex); // Compute smooth triangle mesh contact if one of the two collision shapes is a triangle TriangleShape::computeSmoothTriangleMeshContact(narrowPhaseInfo->collisionShape1, narrowPhaseInfo->collisionShape2, isMinPenetrationFaceNormalPolyhedron1 ? contactPointReferencePolyhedron : contactPointIncidentPolyhedron, isMinPenetrationFaceNormalPolyhedron1 ? contactPointIncidentPolyhedron : contactPointReferencePolyhedron, narrowPhaseInfo->shape1ToWorldTransform, narrowPhaseInfo->shape2ToWorldTransform, minPenetrationDepth, normalWorld); // Create a new contact point narrowPhaseInfo->addContactPoint(normalWorld, minPenetrationDepth, isMinPenetrationFaceNormalPolyhedron1 ? contactPointReferencePolyhedron : contactPointIncidentPolyhedron, isMinPenetrationFaceNormalPolyhedron1 ? contactPointIncidentPolyhedron : contactPointReferencePolyhedron); } } return contactPointsFound; } // Find and return the index of the polyhedron face with the most anti-parallel face normal given a direction vector // This is used to find the incident face on a polyhedron of a given reference face of another polyhedron uint SATAlgorithm::findMostAntiParallelFaceOnPolyhedron(const ConvexPolyhedronShape* polyhedron, const Vector3& direction) const { decimal minDotProduct = DECIMAL_LARGEST; uint mostAntiParallelFace = 0; // For each face of the polyhedron for (uint i=0; i < polyhedron->getNbFaces(); i++) { // Get the face normal decimal dotProduct = polyhedron->getFaceNormal(i).dot(direction); if (dotProduct < minDotProduct) { minDotProduct = dotProduct; mostAntiParallelFace = i; } } return mostAntiParallelFace; } // Compute and return the distance between the two edges in the direction of the candidate separating axis decimal SATAlgorithm::computeDistanceBetweenEdges(const Vector3& edge1A, const Vector3& edge2A, const Vector3& polyhedron2Centroid, const Vector3& edge1Direction, const Vector3& edge2Direction, Vector3& outSeparatingAxisPolyhedron2Space) const { // If the two edges are parallel if (areParallelVectors(edge1Direction, edge2Direction)) { // Return a large penetration depth to skip those edges return DECIMAL_LARGEST; } // Compute the candidate separating axis (cross product between two polyhedrons edges) Vector3 axis = edge1Direction.cross(edge2Direction).getUnit(); // Make sure the axis direction is going from first to second polyhedron if (axis.dot(edge2A - polyhedron2Centroid) > decimal(0.0)) { axis = -axis; } outSeparatingAxisPolyhedron2Space = axis; // Compute and return the distance between the edges return -axis.dot(edge2A - edge1A); } // Return the penetration depth between two polyhedra along a face normal axis of the first polyhedron decimal SATAlgorithm::testSingleFaceDirectionPolyhedronVsPolyhedron(const ConvexPolyhedronShape* polyhedron1, const ConvexPolyhedronShape* polyhedron2, const Transform& polyhedron1ToPolyhedron2, uint faceIndex) const { HalfEdgeStructure::Face face = polyhedron1->getFace(faceIndex); // Get the face normal const Vector3 faceNormal = polyhedron1->getFaceNormal(faceIndex); // Convert the face normal into the local-space of polyhedron 2 const Vector3 faceNormalPolyhedron2Space = polyhedron1ToPolyhedron2.getOrientation() * faceNormal; // Get the support point of polyhedron 2 in the inverse direction of face normal const Vector3 supportPoint = polyhedron2->getLocalSupportPointWithoutMargin(-faceNormalPolyhedron2Space, nullptr); // Compute the penetration depth const Vector3 faceVertex = polyhedron1ToPolyhedron2 * polyhedron1->getVertexPosition(face.faceVertices[0]); decimal penetrationDepth = (faceVertex - supportPoint).dot(faceNormalPolyhedron2Space); return penetrationDepth; } // Test all the normals of a polyhedron for separating axis in the polyhedron vs polyhedron case decimal SATAlgorithm::testFacesDirectionPolyhedronVsPolyhedron(const ConvexPolyhedronShape* polyhedron1, const ConvexPolyhedronShape* polyhedron2, const Transform& polyhedron1ToPolyhedron2, uint& minFaceIndex) const { decimal minPenetrationDepth = DECIMAL_LARGEST; // For each face of the first polyhedron for (uint f = 0; f < polyhedron1->getNbFaces(); f++) { decimal penetrationDepth = testSingleFaceDirectionPolyhedronVsPolyhedron(polyhedron1, polyhedron2, polyhedron1ToPolyhedron2, f); // If the penetration depth is negative, we have found a separating axis if (penetrationDepth <= decimal(0.0)) { minFaceIndex = f; return penetrationDepth; } // Check if we have found a new minimum penetration axis if (penetrationDepth < minPenetrationDepth) { minPenetrationDepth = penetrationDepth; minFaceIndex = f; } } return minPenetrationDepth; } // Return true if two edges of two polyhedrons build a minkowski face (and can therefore be a separating axis) bool SATAlgorithm::testEdgesBuildMinkowskiFace(const ConvexPolyhedronShape* polyhedron1, const HalfEdgeStructure::Edge& edge1, const ConvexPolyhedronShape* polyhedron2, const HalfEdgeStructure::Edge& edge2, const Transform& polyhedron1ToPolyhedron2) const { const Vector3 a = polyhedron1ToPolyhedron2.getOrientation() * polyhedron1->getFaceNormal(edge1.faceIndex); const Vector3 b = polyhedron1ToPolyhedron2.getOrientation() * polyhedron1->getFaceNormal(polyhedron1->getHalfEdge(edge1.twinEdgeIndex).faceIndex); const Vector3 c = polyhedron2->getFaceNormal(edge2.faceIndex); const Vector3 d = polyhedron2->getFaceNormal(polyhedron2->getHalfEdge(edge2.twinEdgeIndex).faceIndex); // Compute b.cross(a) using the edge direction const Vector3 edge1Vertex1 = polyhedron1->getVertexPosition(edge1.vertexIndex); const Vector3 edge1Vertex2 = polyhedron1->getVertexPosition(polyhedron1->getHalfEdge(edge1.twinEdgeIndex).vertexIndex); const Vector3 bCrossA = polyhedron1ToPolyhedron2.getOrientation() * (edge1Vertex1 - edge1Vertex2); // Compute d.cross(c) using the edge direction const Vector3 edge2Vertex1 = polyhedron2->getVertexPosition(edge2.vertexIndex); const Vector3 edge2Vertex2 = polyhedron2->getVertexPosition(polyhedron2->getHalfEdge(edge2.twinEdgeIndex).vertexIndex); const Vector3 dCrossC = edge2Vertex1 - edge2Vertex2; // Test if the two arcs of the Gauss Map intersect (therefore forming a minkowski face) // Note that we negate the normals of the second polyhedron because we are looking at the // Gauss map of the minkowski difference of the polyhedrons return testGaussMapArcsIntersect(a, b, -c, -d, bCrossA, dCrossC); } // Return true if the arcs AB and CD on the Gauss Map (unit sphere) intersect /// This is used to know if the edge between faces with normal A and B on first polyhedron /// and edge between faces with normal C and D on second polygon create a face on the Minkowski /// sum of both polygons. If this is the case, it means that the cross product of both edges /// might be a separating axis. bool SATAlgorithm::testGaussMapArcsIntersect(const Vector3& a, const Vector3& b, const Vector3& c, const Vector3& d, const Vector3& bCrossA, const Vector3& dCrossC) const { const decimal cba = c.dot(bCrossA); const decimal dba = d.dot(bCrossA); const decimal adc = a.dot(dCrossC); const decimal bdc = b.dot(dCrossC); return cba * dba < decimal(0.0) && adc * bdc < decimal(0.0) && cba * bdc > decimal(0.0); }