/******************************************************************************** * ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ * * Copyright (c) 2010-2013 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ // Libraries #include <complex> #include "configuration.h" #include "ConvexMeshShape.h" using namespace reactphysics3d; // Constructor to initialize with a array of 3D vertices. /// This method creates an internal copy of the input vertices. ConvexMeshShape::ConvexMeshShape(const decimal* arrayVertices, uint nbVertices, int stride, decimal margin) : CollisionShape(CONVEX_MESH, margin), mNbVertices(nbVertices), mMinBounds(0, 0, 0), mMaxBounds(0, 0, 0), mIsEdgesInformationUsed(false) { assert(nbVertices > 0); assert(stride > 0); const unsigned char* vertexPointer = (const unsigned char*) arrayVertices; // Copy all the vertices into the internal array for (uint i=0; i<mNbVertices; i++) { const decimal* newPoint = (const decimal*) vertexPointer; mVertices.push_back(Vector3(newPoint[0], newPoint[1], newPoint[2])); vertexPointer += stride; } // Recalculate the bounds of the mesh recalculateBounds(); } // Constructor. /// If you use this constructor, you will need to set the vertices manually one by one using /// the addVertex() method. ConvexMeshShape::ConvexMeshShape(decimal margin) : CollisionShape(CONVEX_MESH, margin), mNbVertices(0), mMinBounds(0, 0, 0), mMaxBounds(0, 0, 0), mIsEdgesInformationUsed(false) { } // Private copy-constructor ConvexMeshShape::ConvexMeshShape(const ConvexMeshShape& shape) : CollisionShape(shape), mVertices(shape.mVertices), mNbVertices(shape.mNbVertices), mMinBounds(shape.mMinBounds), mMaxBounds(shape.mMaxBounds), mIsEdgesInformationUsed(shape.mIsEdgesInformationUsed), mEdgesAdjacencyList(shape.mEdgesAdjacencyList) { assert(mNbVertices == mVertices.size()); } // Destructor ConvexMeshShape::~ConvexMeshShape() { } // Return a local support point in a given direction with the object margin Vector3 ConvexMeshShape::getLocalSupportPointWithMargin(const Vector3& direction, void** cachedCollisionData) const { // Get the support point without the margin Vector3 supportPoint = getLocalSupportPointWithoutMargin(direction, cachedCollisionData); // Get the unit direction vector Vector3 unitDirection = direction; if (direction.lengthSquare() < MACHINE_EPSILON * MACHINE_EPSILON) { unitDirection.setAllValues(1.0, 1.0, 1.0); } unitDirection.normalize(); // Add the margin to the support point and return it return supportPoint + unitDirection * mMargin; } // Return a local support point in a given direction without the object margin. /// If the edges information is not used for collision detection, this method will go through /// the whole vertices list and pick up the vertex with the largest dot product in the support /// direction. This is an O(n) process with "n" being the number of vertices in the mesh. /// However, if the edges information is used, we can cache the previous support vertex and use /// it as a start in a hill-climbing (local search) process to find the new support vertex which /// will be in most of the cases very close to the previous one. Using hill-climbing, this method /// runs in almost constant time. Vector3 ConvexMeshShape::getLocalSupportPointWithoutMargin(const Vector3& direction, void** cachedCollisionData) const { assert(mNbVertices == mVertices.size()); assert(cachedCollisionData != NULL); // Allocate memory for the cached collision data if not allocated yet if ((*cachedCollisionData) == NULL) { *cachedCollisionData = (int*) malloc(sizeof(int)); *((int*)(*cachedCollisionData)) = 0; } // If the edges information is used to speed up the collision detection if (mIsEdgesInformationUsed) { assert(mEdgesAdjacencyList.size() == mNbVertices); uint maxVertex = *((int*)(*cachedCollisionData)); decimal maxDotProduct = direction.dot(mVertices[maxVertex]); bool isOptimal; // Perform hill-climbing (local search) do { isOptimal = true; assert(mEdgesAdjacencyList.at(maxVertex).size() > 0); // For all neighbors of the current vertex std::set<uint>::const_iterator it; std::set<uint>::const_iterator itBegin = mEdgesAdjacencyList.at(maxVertex).begin(); std::set<uint>::const_iterator itEnd = mEdgesAdjacencyList.at(maxVertex).end(); for (it = itBegin; it != itEnd; ++it) { // Compute the dot product decimal dotProduct = direction.dot(mVertices[*it]); // If the current vertex is a better vertex (larger dot product) if (dotProduct > maxDotProduct) { maxVertex = *it; maxDotProduct = dotProduct; isOptimal = false; } } } while(!isOptimal); // Cache the support vertex *((int*)(*cachedCollisionData)) = maxVertex; // Return the support vertex return mVertices[maxVertex]; } else { // If the edges information is not used decimal maxDotProduct = DECIMAL_SMALLEST; uint indexMaxDotProduct = 0; // For each vertex of the mesh for (uint i=0; i<mNbVertices; i++) { // Compute the dot product of the current vertex decimal dotProduct = direction.dot(mVertices[i]); // If the current dot product is larger than the maximum one if (dotProduct > maxDotProduct) { indexMaxDotProduct = i; maxDotProduct = dotProduct; } } assert(maxDotProduct >= decimal(0.0)); // Return the vertex with the largest dot product in the support direction return mVertices[indexMaxDotProduct]; } } // Recompute the bounds of the mesh void ConvexMeshShape::recalculateBounds() { mMinBounds.setToZero(); mMaxBounds.setToZero(); // For each vertex of the mesh for (uint i=0; i<mNbVertices; i++) { if (mVertices[i].x > mMaxBounds.x) mMaxBounds.x = mVertices[i].x; if (mVertices[i].x < mMinBounds.x) mMinBounds.x = mVertices[i].x; if (mVertices[i].y > mMaxBounds.y) mMaxBounds.y = mVertices[i].y; if (mVertices[i].y < mMinBounds.y) mMinBounds.y = mVertices[i].y; if (mVertices[i].z > mMaxBounds.z) mMaxBounds.z = mVertices[i].z; if (mVertices[i].z < mMinBounds.z) mMinBounds.z = mVertices[i].z; } // Add the object margin to the bounds mMaxBounds += Vector3(mMargin, mMargin, mMargin); mMinBounds -= Vector3(mMargin, mMargin, mMargin); } // Test equality between two cone shapes bool ConvexMeshShape::isEqualTo(const CollisionShape& otherCollisionShape) const { const ConvexMeshShape& otherShape = dynamic_cast<const ConvexMeshShape&>(otherCollisionShape); assert(mNbVertices == mVertices.size()); if (mNbVertices != otherShape.mNbVertices) return false; if (mIsEdgesInformationUsed != otherShape.mIsEdgesInformationUsed) return false; if (mEdgesAdjacencyList.size() != otherShape.mEdgesAdjacencyList.size()) return false; // Check that the vertices are the same for (uint i=0; i<mNbVertices; i++) { if (mVertices[i] != otherShape.mVertices[i]) return false; } // Check that the edges are the same for (uint i=0; i<mEdgesAdjacencyList.size(); i++) { assert(otherShape.mEdgesAdjacencyList.count(i) == 1); if (mEdgesAdjacencyList.at(i) != otherShape.mEdgesAdjacencyList.at(i)) return false; } return true; } // Raycast method bool ConvexMeshShape::raycast(const Ray& ray, decimal distance) const { // TODO : Implement this method return false; } // Raycast method with feedback information bool ConvexMeshShape::raycast(const Ray& ray, RaycastInfo& raycastInfo, decimal distance) const { // TODO : Implement this method return false; }