/******************************************************************************** * ReactPhysics3D physics library, http://www.reactphysics3d.com * * Copyright (c) 2010-2015 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ // Libraries #include "TriangleShape.h" #include "collision/ProxyShape.h" #include "configuration.h" #include using namespace reactphysics3d; // Constructor /** * @param point1 First point of the triangle * @param point2 Second point of the triangle * @param point3 Third point of the triangle * @param margin The collision margin (in meters) around the collision shape */ TriangleShape::TriangleShape(const Vector3& point1, const Vector3& point2, const Vector3& point3) : ConvexShape(TRIANGLE, 0) { mPoints[0] = point1; mPoints[1] = point2; mPoints[2] = point3; } // Destructor TriangleShape::~TriangleShape() { } // Raycast method with feedback information /// This method use the line vs triangle raycasting technique described in /// Real-time Collision Detection by Christer Ericson. bool TriangleShape::raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const { // TODO : For all collision shape, try to perform raycasting in local-space and // compute world-space hit point, normal in upper classes when local-space // hit points are returned const Transform localToWorldTransform = proxyShape->getLocalToWorldTransform(); const Transform worldToLocalTransform = localToWorldTransform.getInverse(); const Vector3 point1 = worldToLocalTransform * ray.point1; const Vector3 point2 = worldToLocalTransform * ray.point2; const Vector3 pq = point2 - point1; const Vector3 pa = mPoints[0] - point1; const Vector3 pb = mPoints[1] - point1; const Vector3 pc = mPoints[2] - point1; // Test if the line PQ is inside the eges BC, CA and AB. We use the triple // product for this test. const Vector3 m = pq.cross(pc); decimal u = pb.dot(m); if (u < decimal(0.0)) return false; decimal v = -pa.dot(m); if (v < decimal(0.0)) return false; decimal w = pa.dot(pq.cross(pb)); if (w < decimal(0.0)) return false; // If the line PQ is in the triangle plane (case where u=v=w=0) if (u < MACHINE_EPSILON && u < MACHINE_EPSILON && v < MACHINE_EPSILON) return false; // Compute the barycentric coordinates (u, v, w) to determine the // intersection point R, R = u * a + v * b + w * c decimal denom = decimal(1.0) / (u + v + w); u *= denom; v *= denom; w *= denom; // Compute the local hit point using the barycentric coordinates const Vector3 localHitPoint = u * mPoints[0] + v * mPoints[1] + w * mPoints[2]; const Vector3 localHitNormal = (mPoints[1] - mPoints[0]).cross(mPoints[2] - mPoints[0]); raycastInfo.body = proxyShape->getBody(); raycastInfo.proxyShape = proxyShape; raycastInfo.worldPoint = localToWorldTransform * localHitPoint; raycastInfo.hitFraction = (localHitPoint - point1).length() / pq.length(); raycastInfo.worldNormal = localToWorldTransform.getOrientation() * localHitNormal; raycastInfo.worldNormal.normalize(); return true; }