/******************************************************************************** * ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ * * Copyright (c) 2010-2012 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ #ifndef VECTOR3_H #define VECTOR3_H // Libraries #include #include "mathematics_functions.h" // ReactPhysics3D namespace namespace reactphysics3d { /* ------------------------------------------------------------------- Class Vector3 : This classrepresents 3 dimensionnal vector in space. ------------------------------------------------------------------- */ class Vector3 { private : double values[3]; // Values of the 3D vector public : Vector3(); // Constructor of the class Vector3D Vector3(double x, double y, double z); // Constructor with arguments Vector3(const Vector3& vector); // Copy-constructor virtual ~Vector3(); // Destructor double getX() const; // Get the x component of the vector double getY() const; // Get the y component of the vector double getZ() const; // Get the z component of the vector void setX(double x); // Set the x component of the vector void setY(double y); // Set the y component of the vector void setZ(double z); // Set the z component of the vector void setAllValues(double x, double y, double z); // Set all the values of the vector double length() const; // Return the lenght of the vector double lengthSquare() const; // Return the square of the length of the vector Vector3 getUnit() const; // Return the corresponding unit vector bool isUnit() const; // Return true if the vector is unit and false otherwise bool isZero() const; // Return true if the current vector is the zero vector Vector3 getOneOrthogonalVector() const; // Return one unit orthogonal vectors of the current vector double dot(const Vector3& vector) const; // Dot product of two vectors Vector3 cross(const Vector3& vector) const; // Cross product of two vectors Vector3 getAbsoluteVector() const; // Return the corresponding absolute value vector int getMinAxis() const; // Return the axis with the minimal value int getMaxAxis() const; // Return the axis with the maximal value bool isParallelWith(const Vector3& vector) const; // Return true if two vectors are parallel // --- Overloaded operators --- // bool operator== (const Vector3& vector) const; // Overloaded operator for the equality condition bool operator!= (const Vector3& vector) const; // Overloaded operator for the is different condition Vector3& operator+=(const Vector3& vector); // Overloaded operator for addition with assignment Vector3& operator-=(const Vector3& vector); // Overloaded operator for substraction with assignment Vector3& operator*=(double number); // Overloaded operator for multiplication with a number with assignment double& operator[] (int index); // Overloaded operator for value access const double& operator[] (int index) const; // Overloaded operator for value access // Friend functions friend Vector3 operator+(const Vector3& vector1, const Vector3& vector2); friend Vector3 operator-(const Vector3& vector1, const Vector3& vector2); friend Vector3 operator-(const Vector3& vector); friend Vector3 operator*(const Vector3& vector, double number); friend Vector3 operator*(double number, const Vector3& vector); }; // Get the x component of the vector inline double Vector3::getX() const { return values[0]; } // Get the y component of the vector inline double Vector3::getY() const { return values[1]; } // Get the z component of the vector inline double Vector3::getZ() const { return values[2]; } // Set the x component of the vector inline void Vector3::setX(double x) { this->values[0] = x; } // Set the y component of the vector inline void Vector3::setY(double y) { this->values[1] = y; } // Set the z component of the vector inline void Vector3::setZ(double z) { this->values[2] = z; } // Set all the values of the vector (inline) inline void Vector3::setAllValues(double x, double y, double z) { values[0]= x; values[1] = y; values[2] = z; } // Return the length of the vector (inline) inline double Vector3::length() const { // Compute and return the length of the vector return sqrt(values[0]*values[0] + values[1]*values[1] + values[2]*values[2]); } // Return the square of the length of the vector inline double Vector3::lengthSquare() const { return values[0]*values[0] + values[1]*values[1] + values[2]*values[2]; } // Scalar product of two vectors (inline) inline double Vector3::dot(const Vector3& vector) const { // Compute and return the result of the scalar product return (values[0] * vector.values[0] + values[1] * vector.values[1] + values[2] * vector.values[2]); } // Cross product of two vectors (inline) inline Vector3 Vector3::cross(const Vector3& vector) const { // Compute and return the cross product return Vector3(values[1] * vector.values[2] - values[2] * vector.values[1], values[2] * vector.values[0] - values[0] * vector.values[2], values[0] * vector.values[1] - values[1] * vector.values[0]); } // Return the corresponding absolute value vector inline Vector3 Vector3::getAbsoluteVector() const { return Vector3(std::abs(values[0]), std::abs(values[1]), std::abs(values[2])); } // Return true if two vectors are parallel inline bool Vector3::isParallelWith(const Vector3& vector) const { double scalarProd = this->dot(vector); return approxEqual(std::abs(scalarProd), length() * vector.length()); } // Return the axis with the minimal value inline int Vector3::getMinAxis() const { return (values[0] < values[1] ? (values[0] < values[2] ? 0 : 2) : (values[1] < values[2] ? 1 : 2)); } // Return the axis with the maximal value inline int Vector3::getMaxAxis() const { return (values[0] < values[1] ? (values[1] < values[2] ? 2 : 1) : (values[0] < values[2] ? 2 : 0)); } // Return true if the vector is unit and false otherwise inline bool Vector3::isUnit() const { return approxEqual(values[0] * values[0] + values[1] * values[1] + values[2] * values[2], 1.0); } // Return true if the vector is the zero vector inline bool Vector3::isZero() const { return approxEqual(values[0] * values[0] + values[1] * values[1] + values[2] * values[2], 0.0); } // Overloaded operator for the equality condition inline bool Vector3::operator== (const Vector3& vector) const { return (values[0] == vector.values[0] && values[1] == vector.values[1] && values[2] == vector.values[2]); } // Overloaded operator for the is different condition inline bool Vector3::operator!= (const Vector3& vector) const { return !(*this == vector); } // Overloaded operator for addition with assignment inline Vector3& Vector3::operator+=(const Vector3& vector) { values[0] += vector.values[0]; values[1] += vector.values[1]; values[2] += vector.values[2]; return *this; } // Overloaded operator for substraction with assignment inline Vector3& Vector3::operator-=(const Vector3& vector) { values[0] -= vector.values[0]; values[1] -= vector.values[1]; values[2] -= vector.values[2]; return *this; } // Overloaded operator for multiplication with a number with assignment inline Vector3& Vector3::operator*=(double number) { values[0] *= number; values[1] *= number; values[2] *= number; return *this; } // Overloaded operator for value access inline double& Vector3::operator[] (int index) { return values[index]; } // Overloaded operator for value access inline const double& Vector3::operator[] (int index) const { return values[index]; } // Overloaded operator for addition inline Vector3 operator+(const Vector3& vector1, const Vector3& vector2) { return Vector3(vector1.values[0] + vector2.values[0], vector1.values[1] + vector2.values[1], vector1.values[2] + vector2.values[2]); } // Overloaded operator for substraction inline Vector3 operator-(const Vector3& vector1, const Vector3& vector2) { return Vector3(vector1.values[0] - vector2.values[0], vector1.values[1] - vector2.values[1], vector1.values[2] - vector2.values[2]); } // Overloaded operator for the negative of a vector inline Vector3 operator-(const Vector3& vector) { return Vector3(-vector.values[0], -vector.values[1], -vector.values[2]); } // Overloaded operator for multiplication with a number inline Vector3 operator*(const Vector3& vector, double number) { return Vector3(number * vector.values[0], number * vector.values[1], number * vector.values[2]); } // Overloaded operator for multiplication with a number inline Vector3 operator*(double number, const Vector3& vector) { return vector * number; } } // End of the ReactPhysics3D namespace #endif