/******************************************************************************** * ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ * * Copyright (c) 2010 Daniel Chappuis * ********************************************************************************* * * * Permission is hereby granted, free of charge, to any person obtaining a copy * * of this software and associated documentation files (the "Software"), to deal * * in the Software without restriction, including without limitation the rights * * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * * copies of the Software, and to permit persons to whom the Software is * * furnished to do so, subject to the following conditions: * * * * The above copyright notice and this permission notice shall be included in * * all copies or substantial portions of the Software. * * * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * * THE SOFTWARE. * ********************************************************************************/ // Libraries #include #include "Matrix3x3.h" // Namespaces using namespace reactphysics3d; // Constructor of the class Matrix3x3 Matrix3x3::Matrix3x3() { // Initialize all values in the matrix to zero setAllValues(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0); } // Constructor with arguments Matrix3x3::Matrix3x3(double a1, double a2, double a3, double b1, double b2, double b3, double c1, double c2, double c3) { // Initialize the matrix with the values setAllValues(a1, a2, a3, b1, b2, b3, c1, c2, c3); } // Copy-constructor // TODO : Test if this copy-constructor is correct (check if the the copy matrix use // the same memory place for its array) Matrix3x3::Matrix3x3(const Matrix3x3& matrix2) { // Copy the values in the matrix setAllValues(matrix2.array[0][0], matrix2.array[0][1], matrix2.array[0][2], matrix2.array[1][0], matrix2.array[1][1], matrix2.array[1][2], matrix2.array[2][0], matrix2.array[2][1], matrix2.array[2][2]); } // Destructor Matrix3x3::~Matrix3x3() { } // Return the inverse matrix Matrix3x3 Matrix3x3::getInverse() const throw(MathematicsException) { // Compute the determinant of the matrix double determinant = getDeterminant(); // Check if the determinant is equal to zero if (determinant != 0) { double invDeterminant = 1.0 / determinant; Matrix3x3 tempMatrix; // Compute the inverse of the matrix tempMatrix.setAllValues((array[1][1]*array[2][2]-array[2][1]*array[1][2]), -(array[1][0]*array[2][2]-array[2][0]*array[1][2]), (array[1][0]*array[2][1]-array[2][0]*array[1][1]), -(array[0][1]*array[2][2]-array[2][1]*array[0][2]), (array[0][0]*array[2][2]-array[2][0]*array[0][2]), -(array[0][0]*array[2][1]-array[2][0]*array[0][1]), (array[0][1]*array[1][2]-array[0][2]*array[1][1]), -(array[0][0]*array[1][2]-array[1][0]*array[0][2]), (array[0][0]*array[1][1]-array[0][1]*array[1][0])); // Return the inverse matrix return (invDeterminant * tempMatrix.getTranspose()); } else { // Throw an exception because the inverse of the matrix doesn't exist if the determinant is equal to zero throw MathematicsException("MathematicsException : Impossible to compute the inverse of the matrix because the determinant is equal to zero"); } } // Return the 3x3 identity matrix Matrix3x3 Matrix3x3::identity() { // Return the isdentity matrix return Matrix3x3(1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0); } // Overloaded operator for addition Matrix3x3 Matrix3x3::operator+(const Matrix3x3& matrix2) const { // Return the sum matrix return Matrix3x3(array[0][0] + matrix2.array[0][0], array[0][1] + matrix2.array[0][1], array[0][2] + matrix2.array[0][2], array[1][0] + matrix2.array[1][0], array[1][1] + matrix2.array[1][1], array[1][2] + matrix2.array[1][2], array[2][0] + matrix2.array[2][0], array[2][1] + matrix2.array[2][1], array[2][2] + matrix2.array[2][2]); } // Overloaded operator for substraction Matrix3x3 Matrix3x3::operator-(const Matrix3x3& matrix2) const { // Return the substraction matrix return Matrix3x3(array[0][0] - matrix2.array[0][0], array[0][1] - matrix2.array[0][1], array[0][2] - matrix2.array[0][2], array[1][0] - matrix2.array[1][0], array[1][1] - matrix2.array[1][1], array[1][2] - matrix2.array[1][2], array[2][0] - matrix2.array[2][0], array[2][1] - matrix2.array[2][1], array[2][2] - matrix2.array[2][2]); } // Overloaded operator for multiplication with a number Matrix3x3 Matrix3x3::operator*(double nb) const { // Return multiplied matrix return Matrix3x3(array[0][0] * nb, array[0][1] * nb, array[0][2] * nb, array[1][0] * nb, array[1][1] * nb, array[1][2] * nb, array[2][0] * nb, array[2][1] * nb, array[2][2] * nb); } // Overloaded operator for multiplication with a matrix Matrix3x3 Matrix3x3::operator*(const Matrix3x3& matrix2) const { // Compute and return the multiplication of the matrices return Matrix3x3(array[0][0]*matrix2.array[0][0] + array[0][1]*matrix2.array[1][0] + array[0][2]*matrix2.array[2][0], array[0][0]*matrix2.array[0][1] + array[0][1]*matrix2.array[1][1] + array[0][2]*matrix2.array[2][1], array[0][0]*matrix2.array[0][2] + array[0][1]*matrix2.array[1][2] + array[0][2]*matrix2.array[2][2], array[1][0]*matrix2.array[0][0] + array[1][1]*matrix2.array[1][0] + array[1][2]*matrix2.array[2][0], array[1][0]*matrix2.array[0][1] + array[1][1]*matrix2.array[1][1] + array[1][2]*matrix2.array[2][1], array[1][0]*matrix2.array[0][2] + array[1][1]*matrix2.array[1][2] + array[1][2]*matrix2.array[2][2], array[2][0]*matrix2.array[0][0] + array[2][1]*matrix2.array[1][0] + array[2][2]*matrix2.array[2][0], array[2][0]*matrix2.array[0][1] + array[2][1]*matrix2.array[1][1] + array[2][2]*matrix2.array[2][1], array[2][0]*matrix2.array[0][2] + array[2][1]*matrix2.array[1][2] + array[2][2]*matrix2.array[2][2]); } // Overloaded operator for assignment Matrix3x3& Matrix3x3::operator=(const Matrix3x3& matrix2) { // Check for self-assignment if (this != &matrix2) { setAllValues(matrix2.array[0][0], matrix2.array[0][1], matrix2.array[0][2], matrix2.array[1][0], matrix2.array[1][1], matrix2.array[1][2], matrix2.array[2][0], matrix2.array[2][1], matrix2.array[2][2]); } // Return a reference to the matrix return *this; }