/******************************************************************************** * ReactPhysics3D physics library, http://www.reactphysics3d.com * * Copyright (c) 2010-2015 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ // Libraries #include #include "configuration.h" #include "ConvexMeshShape.h" using namespace reactphysics3d; // Constructor to initialize with an array of 3D vertices. /// This method creates an internal copy of the input vertices. /** * @param arrayVertices Array with the vertices of the convex mesh * @param nbVertices Number of vertices in the convex mesh * @param stride Stride between the beginning of two elements in the vertices array * @param margin Collision margin (in meters) around the collision shape */ ConvexMeshShape::ConvexMeshShape(const decimal* arrayVertices, uint nbVertices, int stride, decimal margin) : ConvexShape(CONVEX_MESH, margin), mNbVertices(nbVertices), mMinBounds(0, 0, 0), mMaxBounds(0, 0, 0), mIsEdgesInformationUsed(false) { assert(nbVertices > 0); assert(stride > 0); const unsigned char* vertexPointer = (const unsigned char*) arrayVertices; // Copy all the vertices into the internal array for (uint i=0; igetVertexDataType(); TriangleVertexArray::IndexDataType indexType = triangleVertexArray->getIndexDataType(); unsigned char* verticesStart = triangleVertexArray->getVerticesStart(); unsigned char* indicesStart = triangleVertexArray->getIndicesStart(); int vertexStride = triangleVertexArray->getVerticesStride(); int indexStride = triangleVertexArray->getIndicesStride(); // For each vertex of the mesh for (int v = 0; v < triangleVertexArray->getNbVertices(); v++) { // Get the vertices components of the triangle if (vertexType == TriangleVertexArray::VERTEX_FLOAT_TYPE) { const float* vertices = (float*)(verticesStart + v * vertexStride); Vector3 vertex(vertices[0], vertices[1], vertices[2] ); vertex = vertex * mScaling; mVertices.push_back(vertex); } else if (vertexType == TriangleVertexArray::VERTEX_DOUBLE_TYPE) { const double* vertices = (double*)(verticesStart + v * vertexStride); Vector3 vertex(vertices[0], vertices[1], vertices[2] ); vertex = vertex * mScaling; mVertices.push_back(vertex); } } // If we need to use the edges information of the mesh if (mIsEdgesInformationUsed) { // For each triangle of the mesh for (int triangleIndex=0; triangleIndexgetNbTriangles(); triangleIndex++) { void* vertexIndexPointer = (indicesStart + triangleIndex * 3 * indexStride); uint vertexIndex[3]; // For each vertex of the triangle for (int k=0; k < 3; k++) { // Get the index of the current vertex in the triangle if (indexType == TriangleVertexArray::INDEX_INTEGER_TYPE) { vertexIndex[k] = ((uint*)vertexIndexPointer)[k]; } else if (indexType == TriangleVertexArray::INDEX_SHORT_TYPE) { vertexIndex[k] = ((unsigned short*)vertexIndexPointer)[k]; } } // Add information about the edges addEdge(vertexIndex[0], vertexIndex[1]); addEdge(vertexIndex[0], vertexIndex[2]); addEdge(vertexIndex[1], vertexIndex[2]); } } mNbVertices = mVertices.size(); recalculateBounds(); } // Constructor. /// If you use this constructor, you will need to set the vertices manually one by one using /// the addVertex() method. ConvexMeshShape::ConvexMeshShape(decimal margin) : ConvexShape(CONVEX_MESH, margin), mNbVertices(0), mMinBounds(0, 0, 0), mMaxBounds(0, 0, 0), mIsEdgesInformationUsed(false) { } // Destructor ConvexMeshShape::~ConvexMeshShape() { } // Return a local support point in a given direction with the object margin Vector3 ConvexMeshShape::getLocalSupportPointWithMargin(const Vector3& direction, void** cachedCollisionData) const { // Get the support point without the margin Vector3 supportPoint = getLocalSupportPointWithoutMargin(direction, cachedCollisionData); // Get the unit direction vector Vector3 unitDirection = direction; if (direction.lengthSquare() < MACHINE_EPSILON * MACHINE_EPSILON) { unitDirection.setAllValues(1.0, 1.0, 1.0); } unitDirection.normalize(); // Add the margin to the support point and return it return supportPoint + unitDirection * mMargin; } // Return a local support point in a given direction without the object margin. /// If the edges information is not used for collision detection, this method will go through /// the whole vertices list and pick up the vertex with the largest dot product in the support /// direction. This is an O(n) process with "n" being the number of vertices in the mesh. /// However, if the edges information is used, we can cache the previous support vertex and use /// it as a start in a hill-climbing (local search) process to find the new support vertex which /// will be in most of the cases very close to the previous one. Using hill-climbing, this method /// runs in almost constant time. Vector3 ConvexMeshShape::getLocalSupportPointWithoutMargin(const Vector3& direction, void** cachedCollisionData) const { assert(mNbVertices == mVertices.size()); assert(cachedCollisionData != NULL); // Allocate memory for the cached collision data if not allocated yet if ((*cachedCollisionData) == NULL) { *cachedCollisionData = (int*) malloc(sizeof(int)); *((int*)(*cachedCollisionData)) = 0; } // If the edges information is used to speed up the collision detection if (mIsEdgesInformationUsed) { assert(mEdgesAdjacencyList.size() == mNbVertices); uint maxVertex = *((int*)(*cachedCollisionData)); decimal maxDotProduct = direction.dot(mVertices[maxVertex]); bool isOptimal; // Perform hill-climbing (local search) do { isOptimal = true; assert(mEdgesAdjacencyList.at(maxVertex).size() > 0); // For all neighbors of the current vertex std::set::const_iterator it; std::set::const_iterator itBegin = mEdgesAdjacencyList.at(maxVertex).begin(); std::set::const_iterator itEnd = mEdgesAdjacencyList.at(maxVertex).end(); for (it = itBegin; it != itEnd; ++it) { // Compute the dot product decimal dotProduct = direction.dot(mVertices[*it]); // If the current vertex is a better vertex (larger dot product) if (dotProduct > maxDotProduct) { maxVertex = *it; maxDotProduct = dotProduct; isOptimal = false; } } } while(!isOptimal); // Cache the support vertex *((int*)(*cachedCollisionData)) = maxVertex; // Return the support vertex return mVertices[maxVertex] * mScaling; } else { // If the edges information is not used double maxDotProduct = DECIMAL_SMALLEST; uint indexMaxDotProduct = 0; // For each vertex of the mesh for (uint i=0; i maxDotProduct) { indexMaxDotProduct = i; maxDotProduct = dotProduct; } } assert(maxDotProduct >= decimal(0.0)); // Return the vertex with the largest dot product in the support direction return mVertices[indexMaxDotProduct] * mScaling; } } // Recompute the bounds of the mesh void ConvexMeshShape::recalculateBounds() { // TODO : Only works if the local origin is inside the mesh // => Make it more robust (init with first vertex of mesh instead) mMinBounds.setToZero(); mMaxBounds.setToZero(); // For each vertex of the mesh for (uint i=0; i mMaxBounds.x) mMaxBounds.x = mVertices[i].x; if (mVertices[i].x < mMinBounds.x) mMinBounds.x = mVertices[i].x; if (mVertices[i].y > mMaxBounds.y) mMaxBounds.y = mVertices[i].y; if (mVertices[i].y < mMinBounds.y) mMinBounds.y = mVertices[i].y; if (mVertices[i].z > mMaxBounds.z) mMaxBounds.z = mVertices[i].z; if (mVertices[i].z < mMinBounds.z) mMinBounds.z = mVertices[i].z; } // Apply the local scaling factor mMaxBounds = mMaxBounds * mScaling; mMinBounds = mMinBounds * mScaling; // Add the object margin to the bounds mMaxBounds += Vector3(mMargin, mMargin, mMargin); mMinBounds -= Vector3(mMargin, mMargin, mMargin); } // Raycast method with feedback information bool ConvexMeshShape::raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const { return proxyShape->mBody->mWorld.mCollisionDetection.mNarrowPhaseGJKAlgorithm.raycast( ray, proxyShape, raycastInfo); }