/******************************************************************************** * ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ * * Copyright (c) 2010-2012 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ // Libraries #include "CollisionDetection.h" #include "../engine/CollisionWorld.h" #include "../body/Body.h" #include "../collision/shapes/BoxShape.h" #include "../body/RigidBody.h" #include "../configuration.h" #include <cassert> #include <complex> #include <set> #include <utility> #include <utility> // We want to use the ReactPhysics3D namespace using namespace reactphysics3d; using namespace std; // Constructor CollisionDetection::CollisionDetection(CollisionWorld* world, MemoryAllocator& memoryAllocator) : mWorld(world), mBroadPhaseAlgorithm(*this), mNarrowPhaseGJKAlgorithm(memoryAllocator), mNarrowPhaseSphereVsSphereAlgorithm(memoryAllocator), mIsCollisionShapesAdded(false) { } // Destructor CollisionDetection::~CollisionDetection() { } // Compute the collision detection void CollisionDetection::computeCollisionDetection() { PROFILE("CollisionDetection::computeCollisionDetection()"); // Compute the broad-phase collision detection computeBroadPhase(); // Compute the narrow-phase collision detection computeNarrowPhase(); } // Compute the broad-phase collision detection void CollisionDetection::computeBroadPhase() { PROFILE("CollisionDetection::computeBroadPhase()"); // If new collision shapes have been added to bodies if (mIsCollisionShapesAdded) { // Ask the broad-phase to recompute the overlapping pairs of collision // shapes. This call can only add new overlapping pairs in the collision // detection. mBroadPhaseAlgorithm.computeOverlappingPairs(); } } // Compute the narrow-phase collision detection void CollisionDetection::computeNarrowPhase() { PROFILE("CollisionDetection::computeNarrowPhase()"); // For each possible collision pair of bodies map<overlappingpairid, OverlappingPair*>::iterator it; for (it = mOverlappingPairs.begin(); it != mOverlappingPairs.end(); it++) { ContactPointInfo* contactInfo = NULL; OverlappingPair* pair = it->second; ProxyShape* shape1 = pair->getShape1(); ProxyShape* shape2 = pair->getShape2(); CollisionBody* const body1 = shape1->getBody(); CollisionBody* const body2 = shape2->getBody(); // Update the contact cache of the overlapping pair pair->update(); // Check if the two bodies are allowed to collide, otherwise, we do not test for collision if (body1->getType() != DYNAMIC && body2->getType() != DYNAMIC) continue; bodyindexpair bodiesIndex = OverlappingPair::computeBodiesIndexPair(body1, body2); if (mNoCollisionPairs.count(bodiesIndex) > 0) continue; // Check if the two bodies are sleeping, if so, we do no test collision between them if (body1->isSleeping() && body2->isSleeping()) continue; // Select the narrow phase algorithm to use according to the two collision shapes NarrowPhaseAlgorithm& narrowPhaseAlgorithm = SelectNarrowPhaseAlgorithm( shape1->getCollisionShape(), shape2->getCollisionShape()); // Notify the narrow-phase algorithm about the overlapping pair we are going to test narrowPhaseAlgorithm.setCurrentOverlappingPair(pair); // Use the narrow-phase collision detection algorithm to check // if there really is a collision const Transform transform1 = body1->getTransform() * shape1->getLocalToBodyTransform(); const Transform transform2 = body2->getTransform() * shape2->getLocalToBodyTransform(); if (narrowPhaseAlgorithm.testCollision(shape1, shape2, contactInfo)) { assert(contactInfo != NULL); // Set the bodies of the contact contactInfo->body1 = dynamic_cast<RigidBody*>(body1); contactInfo->body2 = dynamic_cast<RigidBody*>(body2); assert(contactInfo->body1 != NULL); assert(contactInfo->body2 != NULL); // Create a new contact createContact(pair, contactInfo); // Delete and remove the contact info from the memory allocator contactInfo->ContactPointInfo::~ContactPointInfo(); mWorld->mMemoryAllocator.release(contactInfo, sizeof(ContactPointInfo)); } } } // Allow the broadphase to notify the collision detection about an overlapping pair. /// This method is called by a broad-phase collision detection algorithm void CollisionDetection::broadPhaseNotifyOverlappingPair(ProxyShape* shape1, ProxyShape* shape2) { // Compute the overlapping pair ID overlappingpairid pairID = OverlappingPair::computeID(shape1, shape2); // Check if the overlapping pair already exists if (mOverlappingPairs.find(pairID) != mOverlappingPairs.end()) return; // Create the overlapping pair and add it into the set of overlapping pairs OverlappingPair* newPair = new (mWorld->mMemoryAllocator.allocate(sizeof(OverlappingPair))) OverlappingPair(shape1, shape2, mWorld->mMemoryAllocator); assert(newPair != NULL); std::pair<map<overlappingpairid, OverlappingPair*>::iterator, bool> check = mOverlappingPairs.insert(make_pair(pairID, newPair)); assert(check.second); /* TODO : DELETE THIS // Get the pair of body index bodyindexpair indexPair = addedPair->getBodiesIndexPair(); // If the overlapping pair already exists, we don't do anything if (mOverlappingPairs.count(indexPair) > 0) return; // Create the corresponding broad-phase pair object BroadPhasePair* broadPhasePair = new (mWorld->mMemoryAllocator.allocate(sizeof(BroadPhasePair))) BroadPhasePair(addedPair->body1, addedPair->body2); assert(broadPhasePair != NULL); // Add the pair into the set of overlapping pairs (if not there yet) pair<map<bodyindexpair, BroadPhasePair*>::iterator, bool> check = mOverlappingPairs.insert( make_pair(indexPair, broadPhasePair)); assert(check.second); // Notify the world about the new broad-phase overlapping pair mWorld->notifyAddedOverlappingPair(broadPhasePair); */ } // Remove a body from the collision detection void CollisionDetection::removeProxyCollisionShape(ProxyShape* proxyShape) { // Remove all the overlapping pairs involving this proxy shape std::map<overlappingpairid, OverlappingPair*>::iterator it; for (it = mOverlappingPairs.begin(); it != mOverlappingPairs.end(); ) { if (it->second->getShape1()->mBroadPhaseID == proxyShape->mBroadPhaseID|| it->second->getShape2()->mBroadPhaseID == proxyShape->mBroadPhaseID) { std::map<overlappingpairid, OverlappingPair*>::iterator itToRemove = it; ++it; // Destroy the overlapping pair itToRemove->second->OverlappingPair::~OverlappingPair(); mWorld->mMemoryAllocator.release(itToRemove->second, sizeof(OverlappingPair)); mOverlappingPairs.erase(itToRemove); } else { ++it; } } // Remove the body from the broad-phase mBroadPhaseAlgorithm.removeProxyCollisionShape(proxyShape); } // Create a new contact void CollisionDetection::createContact(OverlappingPair* overlappingPair, const ContactPointInfo* contactInfo) { // Create a new contact ContactPoint* contact = new (mWorld->mMemoryAllocator.allocate(sizeof(ContactPoint))) ContactPoint(*contactInfo); assert(contact != NULL); // If it is the first contact since the pair are overlapping if (overlappingPair->getNbContactPoints() == 0) { // Trigger a callback event if (mWorld->mEventListener != NULL) mWorld->mEventListener->beginContact(*contactInfo); } // Add the contact to the contact cache of the corresponding overlapping pair overlappingPair->addContact(contact); // Add the contact manifold to the list of contact manifolds mContactManifolds.push_back(overlappingPair->getContactManifold()); // Add the contact manifold into the list of contact manifolds // of the two bodies involved in the contact addContactManifoldToBody(overlappingPair->getContactManifold(), overlappingPair->getShape1()->getBody(), overlappingPair->getShape2()->getBody()); // Trigger a callback event for the new contact if (mWorld->mEventListener != NULL) mWorld->mEventListener->newContact(*contactInfo); } // Add a contact manifold to the linked list of contact manifolds of the two bodies involved // in the corresponding contact void CollisionDetection::addContactManifoldToBody(ContactManifold* contactManifold, CollisionBody* body1, CollisionBody* body2) { assert(contactManifold != NULL); // Add the contact manifold at the beginning of the linked // list of contact manifolds of the first body void* allocatedMemory1 = mWorld->mMemoryAllocator.allocate(sizeof(ContactManifoldListElement)); ContactManifoldListElement* listElement1 = new (allocatedMemory1) ContactManifoldListElement(contactManifold, body1->mContactManifoldsList); body1->mContactManifoldsList = listElement1; // Add the joint at the beginning of the linked list of joints of the second body void* allocatedMemory2 = mWorld->mMemoryAllocator.allocate(sizeof(ContactManifoldListElement)); ContactManifoldListElement* listElement2 = new (allocatedMemory2) ContactManifoldListElement(contactManifold, body2->mContactManifoldsList); body2->mContactManifoldsList = listElement2; }