/******************************************************************************** * ReactPhysics3D physics library, http://www.reactphysics3d.com * * Copyright (c) 2010-2018 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ // Libraries #include "FixedJointComponents.h" #include "engine/EntityManager.h" #include "mathematics/Matrix3x3.h" #include // We want to use the ReactPhysics3D namespace using namespace reactphysics3d; // Constructor FixedJointComponents::FixedJointComponents(MemoryAllocator& allocator) :Components(allocator, sizeof(Entity) + sizeof(FixedJoint*) + sizeof(Vector3) + sizeof(Vector3) + sizeof(Vector3) + sizeof(Vector3) + sizeof(Matrix3x3) + sizeof(Matrix3x3) + sizeof(Vector3) + sizeof(Vector3) + sizeof(Matrix3x3) + sizeof(Matrix3x3) + sizeof(Vector3) + sizeof(Vector3) + sizeof(Quaternion)) { // Allocate memory for the components data allocate(INIT_NB_ALLOCATED_COMPONENTS); } // Allocate memory for a given number of components void FixedJointComponents::allocate(uint32 nbComponentsToAllocate) { assert(nbComponentsToAllocate > mNbAllocatedComponents); // Size for the data of a single component (in bytes) const size_t totalSizeBytes = nbComponentsToAllocate * mComponentDataSize; // Allocate memory void* newBuffer = mMemoryAllocator.allocate(totalSizeBytes); assert(newBuffer != nullptr); // New pointers to components data Entity* newJointEntities = static_cast(newBuffer); FixedJoint** newJoints = reinterpret_cast(newJointEntities + nbComponentsToAllocate); Vector3* newLocalAnchorPointBody1 = reinterpret_cast(newJoints + nbComponentsToAllocate); Vector3* newLocalAnchorPointBody2 = reinterpret_cast(newLocalAnchorPointBody1 + nbComponentsToAllocate); Vector3* newR1World = reinterpret_cast(newLocalAnchorPointBody2 + nbComponentsToAllocate); Vector3* newR2World = reinterpret_cast(newR1World + nbComponentsToAllocate); Matrix3x3* newI1 = reinterpret_cast(newR2World + nbComponentsToAllocate); Matrix3x3* newI2 = reinterpret_cast(newI1 + nbComponentsToAllocate); Vector3* newImpulseTranslation = reinterpret_cast(newI2 + nbComponentsToAllocate); Vector3* newImpulseRotation = reinterpret_cast(newImpulseTranslation + nbComponentsToAllocate); Matrix3x3* newInverseMassMatrixTranslation = reinterpret_cast(newImpulseRotation + nbComponentsToAllocate); Matrix3x3* newInverseMassMatrixRotation = reinterpret_cast(newInverseMassMatrixTranslation + nbComponentsToAllocate); Vector3* newBiasTranslation = reinterpret_cast(newInverseMassMatrixRotation + nbComponentsToAllocate); Vector3* newBiasRotation = reinterpret_cast(newBiasTranslation + nbComponentsToAllocate); Quaternion* newInitOrientationDifferenceInv = reinterpret_cast(newBiasRotation + nbComponentsToAllocate); // If there was already components before if (mNbComponents > 0) { // Copy component data from the previous buffer to the new one memcpy(newJointEntities, mJointEntities, mNbComponents * sizeof(Entity)); memcpy(newJoints, mJoints, mNbComponents * sizeof(FixedJoint*)); memcpy(newLocalAnchorPointBody1, mLocalAnchorPointBody1, mNbComponents * sizeof(Vector3)); memcpy(newLocalAnchorPointBody2, mLocalAnchorPointBody2, mNbComponents * sizeof(Vector3)); memcpy(newR1World, mR1World, mNbComponents * sizeof(Vector3)); memcpy(newR2World, mR2World, mNbComponents * sizeof(Vector3)); memcpy(newI1, mI1, mNbComponents * sizeof(Matrix3x3)); memcpy(newI2, mI2, mNbComponents * sizeof(Matrix3x3)); memcpy(newImpulseTranslation, mImpulseTranslation, mNbComponents * sizeof(Vector3)); memcpy(newImpulseRotation, mImpulseRotation, mNbComponents * sizeof(Vector3)); memcpy(newInverseMassMatrixTranslation, mInverseMassMatrixTranslation, mNbComponents * sizeof(Matrix3x3)); memcpy(newInverseMassMatrixRotation, mInverseMassMatrixRotation, mNbComponents * sizeof(Matrix3x3)); memcpy(newBiasTranslation, mBiasTranslation, mNbComponents * sizeof(Vector3)); memcpy(newBiasRotation, mBiasRotation, mNbComponents * sizeof(Vector3)); memcpy(newInitOrientationDifferenceInv, mInitOrientationDifferenceInv, mNbComponents * sizeof(Quaternion)); // Deallocate previous memory mMemoryAllocator.release(mBuffer, mNbAllocatedComponents * mComponentDataSize); } mBuffer = newBuffer; mJointEntities = newJointEntities; mJoints = newJoints; mNbAllocatedComponents = nbComponentsToAllocate; mLocalAnchorPointBody1 = newLocalAnchorPointBody1; mLocalAnchorPointBody2 = newLocalAnchorPointBody2; mR1World = newR1World; mR2World = newR2World; mI1 = newI1; mI2 = newI2; mImpulseTranslation = newImpulseTranslation; mImpulseRotation = newImpulseRotation; mInverseMassMatrixTranslation = newInverseMassMatrixTranslation; mInverseMassMatrixRotation = newInverseMassMatrixRotation; mBiasTranslation = newBiasTranslation; mBiasRotation = newBiasRotation; mInitOrientationDifferenceInv = newInitOrientationDifferenceInv; } // Add a component void FixedJointComponents::addComponent(Entity jointEntity, bool isSleeping, const FixedJointComponent& component) { // Prepare to add new component (allocate memory if necessary and compute insertion index) uint32 index = prepareAddComponent(isSleeping); // Insert the new component data new (mJointEntities + index) Entity(jointEntity); mJoints[index] = nullptr; new (mLocalAnchorPointBody1 + index) Vector3(0, 0, 0); new (mLocalAnchorPointBody2 + index) Vector3(0, 0, 0); new (mR1World + index) Vector3(0, 0, 0); new (mR2World + index) Vector3(0, 0, 0); new (mI1 + index) Matrix3x3(); new (mI2 + index) Matrix3x3(); new (mImpulseTranslation + index) Vector3(0, 0, 0); new (mImpulseRotation + index) Vector3(0, 0, 0); new (mInverseMassMatrixTranslation + index) Matrix3x3(); new (mInverseMassMatrixRotation + index) Matrix3x3(); new (mBiasTranslation + index) Vector3(0, 0, 0); new (mBiasRotation + index) Vector3(0, 0, 0); new (mInitOrientationDifferenceInv + index) Quaternion(0, 0, 0, 0); // Map the entity with the new component lookup index mMapEntityToComponentIndex.add(Pair(jointEntity, index)); mNbComponents++; assert(mDisabledStartIndex <= mNbComponents); assert(mNbComponents == static_cast(mMapEntityToComponentIndex.size())); } // Move a component from a source to a destination index in the components array // The destination location must contain a constructed object void FixedJointComponents::moveComponentToIndex(uint32 srcIndex, uint32 destIndex) { const Entity entity = mJointEntities[srcIndex]; // Copy the data of the source component to the destination location new (mJointEntities + destIndex) Entity(mJointEntities[srcIndex]); mJoints[destIndex] = mJoints[srcIndex]; new (mLocalAnchorPointBody1 + destIndex) Vector3(mLocalAnchorPointBody1[srcIndex]); new (mLocalAnchorPointBody2 + destIndex) Vector3(mLocalAnchorPointBody2[srcIndex]); new (mR1World + destIndex) Vector3(mR1World[srcIndex]); new (mR2World + destIndex) Vector3(mR2World[srcIndex]); new (mI1 + destIndex) Matrix3x3(mI1[srcIndex]); new (mI2 + destIndex) Matrix3x3(mI2[srcIndex]); new (mImpulseTranslation + destIndex) Vector3(mImpulseRotation[srcIndex]); new (mImpulseRotation + destIndex) Vector3(mImpulseRotation[srcIndex]); new (mInverseMassMatrixTranslation + destIndex) Matrix3x3(mInverseMassMatrixTranslation[srcIndex]); new (mInverseMassMatrixRotation + destIndex) Matrix3x3(mInverseMassMatrixRotation[srcIndex]); new (mBiasTranslation + destIndex) Vector3(mBiasTranslation[srcIndex]); new (mBiasRotation + destIndex) Vector3(mBiasRotation[srcIndex]); new (mInitOrientationDifferenceInv + destIndex) Quaternion(mInitOrientationDifferenceInv[srcIndex]); // Destroy the source component destroyComponent(srcIndex); assert(!mMapEntityToComponentIndex.containsKey(entity)); // Update the entity to component index mapping mMapEntityToComponentIndex.add(Pair(entity, destIndex)); assert(mMapEntityToComponentIndex[mJointEntities[destIndex]] == destIndex); } // Swap two components in the array void FixedJointComponents::swapComponents(uint32 index1, uint32 index2) { // Copy component 1 data Entity jointEntity1(mJointEntities[index1]); FixedJoint* joint1 = mJoints[index1]; Vector3 localAnchorPointBody1(mLocalAnchorPointBody1[index1]); Vector3 localAnchorPointBody2(mLocalAnchorPointBody2[index1]); Vector3 r1World1(mR1World[index1]); Vector3 r2World1(mR2World[index1]); Matrix3x3 i11(mI1[index1]); Matrix3x3 i21(mI2[index1]); Vector3 impulseTranslation1(mImpulseTranslation[index1]); Vector3 impulseRotation1(mImpulseRotation[index1]); Matrix3x3 inverseMassMatrixTranslation1(mInverseMassMatrixTranslation[index1]); Matrix3x3 inverseMassMatrixRotation1(mInverseMassMatrixRotation[index1]); Vector3 biasTranslation1(mBiasTranslation[index1]); Vector3 biasRotation1(mBiasRotation[index1]); Quaternion initOrientationDifferenceInv1(mInitOrientationDifferenceInv[index1]); // Destroy component 1 destroyComponent(index1); moveComponentToIndex(index2, index1); // Reconstruct component 1 at component 2 location new (mJointEntities + index2) Entity(jointEntity1); mJoints[index2] = joint1; new (mLocalAnchorPointBody1 + index2) Vector3(localAnchorPointBody1); new (mLocalAnchorPointBody2 + index2) Vector3(localAnchorPointBody2); new (mR1World + index2) Vector3(r1World1); new (mR2World + index2) Vector3(r2World1); new (mI1 + index2) Matrix3x3(i11); new (mI2 + index2) Matrix3x3(i21); new (mImpulseTranslation + index2) Vector3(impulseTranslation1); new (mImpulseRotation + index2) Vector3(impulseRotation1); new (mInverseMassMatrixTranslation + index2) Matrix3x3(inverseMassMatrixTranslation1); new (mInverseMassMatrixRotation + index2) Matrix3x3(inverseMassMatrixRotation1); new (mBiasTranslation + index2) Vector3(biasTranslation1); new (mBiasRotation + index2) Vector3(biasRotation1); new (mInitOrientationDifferenceInv + index2) Quaternion(initOrientationDifferenceInv1); // Update the entity to component index mapping mMapEntityToComponentIndex.add(Pair(jointEntity1, index2)); assert(mMapEntityToComponentIndex[mJointEntities[index1]] == index1); assert(mMapEntityToComponentIndex[mJointEntities[index2]] == index2); assert(mNbComponents == static_cast(mMapEntityToComponentIndex.size())); } // Destroy a component at a given index void FixedJointComponents::destroyComponent(uint32 index) { Components::destroyComponent(index); assert(mMapEntityToComponentIndex[mJointEntities[index]] == index); mMapEntityToComponentIndex.remove(mJointEntities[index]); mJointEntities[index].~Entity(); mJoints[index] = nullptr; mLocalAnchorPointBody1[index].~Vector3(); mLocalAnchorPointBody2[index].~Vector3(); mR1World[index].~Vector3(); mR2World[index].~Vector3(); mI1[index].~Matrix3x3(); mI2[index].~Matrix3x3(); mImpulseTranslation[index].~Vector3(); mImpulseRotation[index].~Vector3(); mInverseMassMatrixTranslation[index].~Matrix3x3(); mInverseMassMatrixRotation[index].~Matrix3x3(); mBiasTranslation[index].~Vector3(); mBiasRotation[index].~Vector3(); mInitOrientationDifferenceInv[index].~Quaternion(); }