/******************************************************************************** * ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ * * Copyright (c) 2010-2012 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ // Libraries #include "DynamicsWorld.h" // Namespaces using namespace reactphysics3d; using namespace std; // Constructor DynamicsWorld::DynamicsWorld(const Vector3 &gravity, decimal timeStep = DEFAULT_TIMESTEP) : CollisionWorld(), mTimer(timeStep), mGravity(gravity), mIsGravityOn(true), mContactSolver(*this, mConstrainedLinearVelocities, mConstrainedAngularVelocities, mMapBodyToConstrainedVelocityIndex), mIsDeactivationActive(DEACTIVATION_ENABLED) { } // Destructor DynamicsWorld::~DynamicsWorld() { // Delete the remaining overlapping pairs for (map<std::pair<bodyindex, bodyindex>, OverlappingPair*>::iterator it=mOverlappingPairs.begin(); it != mOverlappingPairs.end(); it++) { // Delete the overlapping pair (*it).second->OverlappingPair::~OverlappingPair(); mMemoryPoolOverlappingPairs.freeObject((*it).second); } // Free the allocated memory for the constrained velocities cleanupConstrainedVelocitiesArray(); } // Update the physics simulation void DynamicsWorld::update() { assert(mTimer.getIsRunning()); // Compute the time since the last update() call and update the timer mTimer.update(); // Apply the gravity force to all bodies applyGravity(); // While the time accumulator is not empty while(mTimer.isPossibleToTakeStep()) { // Remove all contact manifolds mContactManifolds.clear(); // Compute the collision detection mCollisionDetection.computeCollisionDetection(); // Initialize the constrained velocities initConstrainedVelocitiesArray(); // If there are contacts if (!mContactManifolds.empty()) { // Solve the contacts mContactSolver.solve(mTimer.getTimeStep()); } // Update the timer mTimer.nextStep(); // Reset the movement boolean variable of each body to false resetBodiesMovementVariable(); // Update the position and orientation of each body updateRigidBodiesPositionAndOrientation(); // Cleanup of the contact solver mContactSolver.cleanup(); // Cleanup the constrained velocities cleanupConstrainedVelocitiesArray(); } // Compute and set the interpolation factor to all the bodies setInterpolationFactorToAllBodies(); } // Update the position and orientation of the rigid bodies void DynamicsWorld::updateRigidBodiesPositionAndOrientation() { decimal dt = mTimer.getTimeStep(); // For each rigid body of the world for (set<RigidBody*>::iterator it=getRigidBodiesBeginIterator(); it != getRigidBodiesEndIterator(); ++it) { RigidBody* rigidBody = *it; assert(rigidBody); // If the body is allowed to move if (rigidBody->getIsMotionEnabled()) { // Update the old Transform of the body rigidBody->updateOldTransform(); // Get the constrained velocity uint indexArray = mMapBodyToConstrainedVelocityIndex[rigidBody]; Vector3 newLinVelocity = mConstrainedLinearVelocities[indexArray]; Vector3 newAngVelocity = mConstrainedAngularVelocities[indexArray]; // Update the linear and angular velocity of the body rigidBody->setLinearVelocity(newLinVelocity); rigidBody->setAngularVelocity(newAngVelocity); // Add the split impulse velocity from Contact Solver (only used to update the position) if (mContactSolver.isConstrainedBody(rigidBody)) { newLinVelocity += mContactSolver.getSplitLinearVelocityOfBody(rigidBody); newAngVelocity += mContactSolver.getSplitAngularVelocityOfBody(rigidBody); } // Get current position and orientation of the body const Vector3& currentPosition = rigidBody->getTransform().getPosition(); const Quaternion& currentOrientation = rigidBody->getTransform().getOrientation(); // Compute the new position of the body Vector3 newPosition = currentPosition + newLinVelocity * dt; Quaternion newOrientation = currentOrientation + Quaternion(newAngVelocity.getX(), newAngVelocity.getY(), newAngVelocity.getZ(), 0) * currentOrientation * 0.5 * dt; // Update the Transform of the body Transform newTransform(newPosition, newOrientation.getUnit()); rigidBody->setTransform(newTransform); // Update the AABB of the rigid body rigidBody->updateAABB(); } } } // Compute and set the interpolation factor to all bodies void DynamicsWorld::setInterpolationFactorToAllBodies() { // Compute the interpolation factor decimal factor = mTimer.computeInterpolationFactor(); assert(factor >= 0.0 && factor <= 1.0); // Set the factor to all bodies for (set<RigidBody*>::iterator it=getRigidBodiesBeginIterator(); it != getRigidBodiesEndIterator(); ++it) { RigidBody* rigidBody = dynamic_cast<RigidBody*>(*it); assert(rigidBody); rigidBody->setInterpolationFactor(factor); } } // Initialize the constrained velocities array at each step void DynamicsWorld::initConstrainedVelocitiesArray() { // TODO : Use better memory allocation here mConstrainedLinearVelocities = std::vector<Vector3>(mRigidBodies.size(), Vector3(0, 0, 0)); mConstrainedAngularVelocities = std::vector<Vector3>(mRigidBodies.size(), Vector3(0, 0, 0)); double dt = mTimer.getTimeStep(); // Fill in the mapping of rigid body to their index in the constrained // velocities arrays uint i = 0; for (std::set<RigidBody*>::iterator it = mRigidBodies.begin(); it != mRigidBodies.end(); ++it) { RigidBody* rigidBody = *it; mMapBodyToConstrainedVelocityIndex.insert(std::make_pair<RigidBody*, uint>(rigidBody, i)); // TODO : Move it somewhere else mConstrainedLinearVelocities[i] = rigidBody->getLinearVelocity() + dt * rigidBody->getMassInverse() *rigidBody->getExternalForce(); mConstrainedAngularVelocities[i] = rigidBody->getAngularVelocity() + dt * rigidBody->getInertiaTensorInverseWorld() * rigidBody->getExternalTorque(); i++; } } // Cleanup the constrained velocities array at each step void DynamicsWorld::cleanupConstrainedVelocitiesArray() { // Clear the constrained velocites mConstrainedLinearVelocities.clear(); mConstrainedAngularVelocities.clear(); // Clear the rigid body to velocities array index mapping mMapBodyToConstrainedVelocityIndex.clear(); } // Apply the gravity force to all bodies of the physics world void DynamicsWorld::applyGravity() { // For each body of the physics world for (set<RigidBody*>::iterator it=getRigidBodiesBeginIterator(); it != getRigidBodiesEndIterator(); ++it) { RigidBody* rigidBody = dynamic_cast<RigidBody*>(*it); assert(rigidBody); // If the gravity force is on if(mIsGravityOn) { // Apply the current gravity force to the body rigidBody->setExternalForce(rigidBody->getMass() * mGravity); } } } // Create a rigid body into the physics world RigidBody* DynamicsWorld::createRigidBody(const Transform& transform, decimal mass, const Matrix3x3& inertiaTensorLocal, CollisionShape* collisionShape) { // Compute the body ID bodyindex bodyID = computeNextAvailableBodyID(); // Largest index cannot be used (it is used for invalid index) assert(bodyID < std::numeric_limits<reactphysics3d::bodyindex>::max()); // Create the rigid body RigidBody* rigidBody = new (mMemoryPoolRigidBodies.allocateObject()) RigidBody(transform, mass, inertiaTensorLocal, collisionShape, bodyID); // Add the rigid body to the physics world mBodies.insert(rigidBody); mRigidBodies.insert(rigidBody); // Add the rigid body to the collision detection mCollisionDetection.addBody(rigidBody); // Return the pointer to the rigid body return rigidBody; } // Destroy a rigid body void DynamicsWorld::destroyRigidBody(RigidBody* rigidBody) { // Remove the body from the collision detection mCollisionDetection.removeBody(rigidBody); // Add the body ID to the list of free IDs mFreeBodiesIDs.push_back(rigidBody->getID()); // Call the constructor of the rigid body rigidBody->RigidBody::~RigidBody(); // Remove the rigid body from the list of rigid bodies mBodies.erase(rigidBody); // TOOD : Maybe use a set to make this faster mRigidBodies.erase(rigidBody); // TOOD : Maybe use a set to make this faster // Free the object from the memory pool mMemoryPoolRigidBodies.freeObject(rigidBody); } // Remove all constraints in the physics world void DynamicsWorld::removeAllConstraints() { mConstraints.clear(); } // Notify the world about a new broad-phase overlapping pair void DynamicsWorld::notifyAddedOverlappingPair(const BroadPhasePair* addedPair) { // Get the pair of body index std::pair<bodyindex, bodyindex> indexPair = addedPair->getBodiesIndexPair(); // Add the pair into the set of overlapping pairs (if not there yet) OverlappingPair* newPair = new (mMemoryPoolOverlappingPairs.allocateObject()) OverlappingPair(addedPair->body1, addedPair->body2, mMemoryPoolContacts); std::pair<map<std::pair<bodyindex, bodyindex>, OverlappingPair*>::iterator, bool> check = mOverlappingPairs.insert(make_pair(indexPair, newPair)); assert(check.second); } // Notify the world about a removed broad-phase overlapping pair void DynamicsWorld::notifyRemovedOverlappingPair(const BroadPhasePair* removedPair) { // Get the pair of body index std::pair<bodyindex, bodyindex> indexPair = removedPair->getBodiesIndexPair(); // Remove the overlapping pair from the memory pool mOverlappingPairs[indexPair]->OverlappingPair::~OverlappingPair(); mMemoryPoolOverlappingPairs.freeObject(mOverlappingPairs[indexPair]); mOverlappingPairs.erase(indexPair); } // Notify the world about a new narrow-phase contact void DynamicsWorld::notifyNewContact(const BroadPhasePair* broadPhasePair, const ContactInfo* contactInfo) { RigidBody* const rigidBody1 = dynamic_cast<RigidBody* const>(broadPhasePair->body1); RigidBody* const rigidBody2 = dynamic_cast<RigidBody* const>(broadPhasePair->body2); assert(rigidBody1); assert(rigidBody2); // Create a new contact Contact* contact = new (mMemoryPoolContacts.allocateObject()) Contact(rigidBody1, rigidBody2, contactInfo); assert(contact); // Get the corresponding overlapping pair pair<bodyindex, bodyindex> indexPair = broadPhasePair->getBodiesIndexPair(); OverlappingPair* overlappingPair = mOverlappingPairs[indexPair]; assert(overlappingPair); // Add the contact to the contact cache of the corresponding overlapping pair overlappingPair->addContact(contact); // Create a contact manifold with the contact points of the two bodies ContactManifold contactManifold; contactManifold.nbContacts = 0; // Add all the contacts in the contact cache of the two bodies // to the set of constraints in the physics world for (uint i=0; i<overlappingPair->getNbContacts(); i++) { contactManifold.contacts[i] = overlappingPair->getContact(i); contactManifold.nbContacts++; } // Add the contact manifold to the world mContactManifolds.push_back(contactManifold); }