/******************************************************************************** * ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ * * Copyright (c) 2010-2013 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ #ifndef REACTPHYSICS3D_COLLISION_SHAPE_H #define REACTPHYSICS3D_COLLISION_SHAPE_H // Libraries #include #include #include "../../mathematics/Vector3.h" #include "../../mathematics/Matrix3x3.h" #include "AABB.h" #include "../../memory/MemoryAllocator.h" /// ReactPhysics3D namespace namespace reactphysics3d { /// Type of the collision shape enum CollisionShapeType {BOX, SPHERE, CONE, CYLINDER, CAPSULE, CONVEX_MESH}; // Declarations class CollisionBody; class ProxyShape; // Class CollisionShape /** * This abstract class represents the collision shape associated with a * body that is used during the narrow-phase collision detection. */ class CollisionShape { protected : // -------------------- Attributes -------------------- // /// Type of the collision shape CollisionShapeType mType; /// Current number of similar created shapes uint mNbSimilarCreatedShapes; /// Margin used for the GJK collision detection algorithm decimal mMargin; // -------------------- Methods -------------------- // /// Private copy-constructor CollisionShape(const CollisionShape& shape); /// Private assignment operator CollisionShape& operator=(const CollisionShape& shape); public : // -------------------- Methods -------------------- // /// Constructor CollisionShape(CollisionShapeType type, decimal margin); /// Destructor virtual ~CollisionShape(); /// Allocate and return a copy of the object virtual CollisionShape* clone(void* allocatedMemory) const=0; /// Return the type of the collision shapes CollisionShapeType getType() const; /// Return the number of similar created shapes uint getNbSimilarCreatedShapes() const; /// Return the current object margin decimal getMargin() const; /// Return the number of bytes used by the collision shape virtual size_t getSizeInBytes() const = 0; /// Return the local bounds of the shape in x, y and z directions virtual void getLocalBounds(Vector3& min, Vector3& max) const=0; /// Return the local inertia tensor of the collision shapes virtual void computeLocalInertiaTensor(Matrix3x3& tensor, decimal mass) const=0; /// Compute the world-space AABB of the collision shape given a transform virtual void computeAABB(AABB& aabb, const Transform& transform) const; /// Increment the number of similar allocated collision shapes void incrementNbSimilarCreatedShapes(); /// Decrement the number of similar allocated collision shapes void decrementNbSimilarCreatedShapes(); /// Equality operator between two collision shapes. bool operator==(const CollisionShape& otherCollisionShape) const; /// Test equality between two collision shapes of the same type (same derived classes). virtual bool isEqualTo(const CollisionShape& otherCollisionShape) const=0; /// Create a proxy collision shape for the collision shape virtual ProxyShape* createProxyShape(MemoryAllocator& allocator, CollisionBody* body, const Transform& transform, decimal mass)=0; }; // Class ProxyShape /** * The CollisionShape instances are supposed to be unique for memory optimization. For instance, * consider two rigid bodies with the same sphere collision shape. In this situation, we will have * a unique instance of SphereShape but we need to differentiate between the two instances during * the collision detection. They do not have the same position in the world and they do not * belong to the same rigid body. The ProxyShape class is used for that purpose by attaching a * rigid body with one of its collision shape. A body can have multiple proxy shapes (one for * each collision shape attached to the body). */ class ProxyShape { private: // -------------------- Attributes -------------------- // /// Pointer to the parent body CollisionBody* mBody; /// Local-space to parent body-space transform (does not change over time) const Transform mLocalToBodyTransform; /// Mass (in kilogramms) of the corresponding collision shape decimal mMass; /// Pointer to the next proxy shape of the body (linked list) ProxyShape* mNext; /// Broad-phase ID (node ID in the dynamic AABB tree) int mBroadPhaseID; // -------------------- Methods -------------------- // /// Private copy-constructor ProxyShape(const ProxyShape& proxyShape); /// Private assignment operator ProxyShape& operator=(const ProxyShape& proxyShape); /// Return the non-const collision shape virtual CollisionShape* getInternalCollisionShape() const=0; public: // -------------------- Methods -------------------- // /// Constructor ProxyShape(CollisionBody* body, const Transform& transform, decimal mass); /// Destructor ~ProxyShape(); /// Return the collision shape virtual const CollisionShape* getCollisionShape() const=0; /// Return the number of bytes used by the proxy collision shape virtual size_t getSizeInBytes() const=0; /// Return the parent body CollisionBody* getBody() const; /// Return the mass of the collision shape decimal getMass() const; /// Return the local to parent body transform const Transform& getLocalToBodyTransform() const; /// Return a local support point in a given direction with the object margin virtual Vector3 getLocalSupportPointWithMargin(const Vector3& direction)=0; /// Return a local support point in a given direction without the object margin virtual Vector3 getLocalSupportPointWithoutMargin(const Vector3& direction)=0; /// Return the current object margin virtual decimal getMargin() const=0; // -------------------- Friendship -------------------- // friend class OverlappingPair; friend class CollisionBody; friend class RigidBody; friend class BroadPhaseAlgorithm; friend class DynamicAABBTree; friend class CollisionDetection; }; // Return the type of the collision shape inline CollisionShapeType CollisionShape::getType() const { return mType; } // Return the number of similar created shapes inline uint CollisionShape::getNbSimilarCreatedShapes() const { return mNbSimilarCreatedShapes; } // Return the current object margin inline decimal CollisionShape::getMargin() const { return mMargin; } // Increment the number of similar allocated collision shapes inline void CollisionShape::incrementNbSimilarCreatedShapes() { mNbSimilarCreatedShapes++; } // Decrement the number of similar allocated collision shapes inline void CollisionShape::decrementNbSimilarCreatedShapes() { mNbSimilarCreatedShapes--; } // Equality operator between two collision shapes. /// This methods returns true only if the two collision shapes are of the same type and /// of the same dimensions. inline bool CollisionShape::operator==(const CollisionShape& otherCollisionShape) const { // If the two collisions shapes are not of the same type (same derived classes) // we return false if (mType != otherCollisionShape.mType) return false; assert(typeid(*this) == typeid(otherCollisionShape)); if (mMargin != otherCollisionShape.mMargin) return false; // Check if the two shapes are equal return otherCollisionShape.isEqualTo(*this); } // Return the parent body inline CollisionBody* ProxyShape::getBody() const { return mBody; } // Return the mass of the collision shape inline decimal ProxyShape::getMass() const { return mMass; } // Return the local to parent body transform inline const Transform& ProxyShape::getLocalToBodyTransform() const { return mLocalToBodyTransform; } } #endif