/******************************************************************************** * ReactPhysics3D physics library, http://www.reactphysics3d.com * * Copyright (c) 2010-2015 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ // Libraries #include "Capsule.h" openglframework::VertexBufferObject Capsule::mVBOVertices(GL_ARRAY_BUFFER); openglframework::VertexBufferObject Capsule::mVBONormals(GL_ARRAY_BUFFER); openglframework::VertexBufferObject Capsule::mVBOTextureCoords(GL_ARRAY_BUFFER); openglframework::VertexBufferObject Capsule::mVBOIndices(GL_ELEMENT_ARRAY_BUFFER); openglframework::VertexArrayObject Capsule::mVAO; int Capsule::totalNbCapsules = 0; // Constructor Capsule::Capsule(float radius, float height, const openglframework::Vector3& position, reactphysics3d::CollisionWorld* world, const std::string& meshFolderPath, openglframework::Shader& shader) : openglframework::Mesh(), mRadius(radius), mHeight(height) { // Load the mesh from a file openglframework::MeshReaderWriter::loadMeshFromFile(meshFolderPath + "capsule.obj", *this); // Calculate the normals of the mesh calculateNormals(); // Compute the scaling matrix mScalingMatrix = openglframework::Matrix4(mRadius, 0, 0, 0, 0, (mHeight + 2.0f * mRadius) / 3.0f, 0,0, 0, 0, mRadius, 0, 0, 0, 0, 1.0f); // Initialize the position where the sphere will be rendered translateWorld(position); // Create the collision shape for the rigid body (sphere shape) // ReactPhysics3D will clone this object to create an internal one. Therefore, // it is OK if this object is destroyed right after calling RigidBody::addCollisionShape() const rp3d::CapsuleShape collisionShape(mRadius, mHeight); // Initial position and orientation of the rigid body rp3d::Vector3 initPosition(position.x, position.y, position.z); rp3d::Quaternion initOrientation = rp3d::Quaternion::identity(); rp3d::Transform transform(initPosition, initOrientation); mPreviousTransform = transform; // Create a rigid body corresponding in the dynamics world mRigidBody = world->createCollisionBody(transform); // Add a collision shape to the body and specify the mass of the shape mRigidBody->addCollisionShape(collisionShape, rp3d::Transform::identity()); mTransformMatrix = mTransformMatrix * mScalingMatrix; // Create the VBOs and VAO if (totalNbCapsules == 0) { createVBOAndVAO(shader); } totalNbCapsules++; } // Constructor Capsule::Capsule(float radius, float height, const openglframework::Vector3& position, float mass, reactphysics3d::DynamicsWorld* dynamicsWorld, const std::string& meshFolderPath, openglframework::Shader &shader) : openglframework::Mesh(), mRadius(radius), mHeight(height), mColor(0.5f, 0.5f, 0.5f, 1.0f) { // Load the mesh from a file openglframework::MeshReaderWriter::loadMeshFromFile(meshFolderPath + "capsule.obj", *this); // Calculate the normals of the mesh calculateNormals(); // Compute the scaling matrix mScalingMatrix = openglframework::Matrix4(mRadius, 0, 0, 0, 0, (mHeight + 2.0f * mRadius) / 3.0f, 0,0, 0, 0, mRadius, 0, 0, 0, 0, 1.0f); // Initialize the position where the sphere will be rendered translateWorld(position); // Create the collision shape for the rigid body (sphere shape) // ReactPhysics3D will clone this object to create an internal one. Therefore, // it is OK if this object is destroyed right after calling RigidBody::addCollisionShape() const rp3d::CapsuleShape collisionShape(mRadius, mHeight); // Initial position and orientation of the rigid body rp3d::Vector3 initPosition(position.x, position.y, position.z); rp3d::Quaternion initOrientation = rp3d::Quaternion::identity(); rp3d::Transform transform(initPosition, initOrientation); // Create a rigid body corresponding in the dynamics world rp3d::RigidBody* body = dynamicsWorld->createRigidBody(transform); // Add a collision shape to the body and specify the mass of the shape body->addCollisionShape(collisionShape, rp3d::Transform::identity(), mass); mRigidBody = body; mTransformMatrix = mTransformMatrix * mScalingMatrix; // Create the VBOs and VAO if (totalNbCapsules == 0) { createVBOAndVAO(shader); } totalNbCapsules++; } // Destructor Capsule::~Capsule() { if (totalNbCapsules == 1) { // Destroy the mesh destroy(); // Destroy the VBOs and VAO mVBOIndices.destroy(); mVBOVertices.destroy(); mVBONormals.destroy(); mVBOTextureCoords.destroy(); mVAO.destroy(); } totalNbCapsules--; } // Render the sphere at the correct position and with the correct orientation void Capsule::render(openglframework::Shader& shader, const openglframework::Matrix4& worldToCameraMatrix) { // Bind the shader shader.bind(); // Set the model to camera matrix const openglframework::Matrix4 localToCameraMatrix = worldToCameraMatrix * mTransformMatrix; shader.setMatrix4x4Uniform("localToCameraMatrix", localToCameraMatrix); // Set the normal matrix (inverse transpose of the 3x3 upper-left sub matrix of the // model-view matrix) const openglframework::Matrix3 normalMatrix = localToCameraMatrix.getUpperLeft3x3Matrix().getInverse().getTranspose(); shader.setMatrix3x3Uniform("normalMatrix", normalMatrix); // Set the vertex color openglframework::Vector4 color(mColor.r, mColor.g, mColor.b, mColor.a); shader.setVector4Uniform("vertexColor", color); // Bind the VAO mVAO.bind(); // For each part of the mesh for (unsigned int i=0; igetTransform(); // Interpolate the transform between the previous one and the new one rp3d::Transform interpolatedTransform = rp3d::Transform::interpolateTransforms(mPreviousTransform, transform, interpolationFactor); mPreviousTransform = transform; // Compute the transform used for rendering the sphere rp3d::decimal matrix[16]; interpolatedTransform.getOpenGLMatrix(matrix); openglframework::Matrix4 newMatrix(matrix[0], matrix[4], matrix[8], matrix[12], matrix[1], matrix[5], matrix[9], matrix[13], matrix[2], matrix[6], matrix[10], matrix[14], matrix[3], matrix[7], matrix[11], matrix[15]); // Apply the scaling matrix to have the correct sphere dimensions mTransformMatrix = newMatrix * mScalingMatrix; } // Create the Vertex Buffer Objects used to render with OpenGL. /// We create two VBOs (one for vertices and one for indices) void Capsule::createVBOAndVAO(openglframework::Shader& shader) { // Bind the shader shader.bind(); // Get the location of shader attribute variables GLint vertexPositionLoc = shader.getAttribLocation("vertexPosition"); GLint vertexNormalLoc = shader.getAttribLocation("vertexNormal"); GLint vertexTexCoordLoc = shader.getAttribLocation("textureCoords"); // Create the VBO for the vertices data mVBOVertices.create(); mVBOVertices.bind(); size_t sizeVertices = mVertices.size() * sizeof(openglframework::Vector3); mVBOVertices.copyDataIntoVBO(sizeVertices, getVerticesPointer(), GL_STATIC_DRAW); mVBOVertices.unbind(); // Create the VBO for the normals data mVBONormals.create(); mVBONormals.bind(); size_t sizeNormals = mNormals.size() * sizeof(openglframework::Vector3); mVBONormals.copyDataIntoVBO(sizeNormals, getNormalsPointer(), GL_STATIC_DRAW); mVBONormals.unbind(); if (hasTexture()) { // Create the VBO for the texture co data mVBOTextureCoords.create(); mVBOTextureCoords.bind(); size_t sizeTextureCoords = mUVs.size() * sizeof(openglframework::Vector2); mVBOTextureCoords.copyDataIntoVBO(sizeTextureCoords, getUVTextureCoordinatesPointer(), GL_STATIC_DRAW); mVBOTextureCoords.unbind(); } // Create th VBO for the indices data mVBOIndices.create(); mVBOIndices.bind(); size_t sizeIndices = mIndices[0].size() * sizeof(uint); mVBOIndices.copyDataIntoVBO(sizeIndices, getIndicesPointer(), GL_STATIC_DRAW); mVBOIndices.unbind(); // Create the VAO for both VBOs mVAO.create(); mVAO.bind(); // Bind the VBO of vertices mVBOVertices.bind(); glEnableVertexAttribArray(vertexPositionLoc); glVertexAttribPointer(vertexPositionLoc, 3, GL_FLOAT, GL_FALSE, 0, (char*)NULL); // Bind the VBO of normals mVBONormals.bind(); glEnableVertexAttribArray(vertexNormalLoc); glVertexAttribPointer(vertexNormalLoc, 3, GL_FLOAT, GL_FALSE, 0, (char*)NULL); if (hasTexture()) { // Bind the VBO of texture coords mVBOTextureCoords.bind(); glEnableVertexAttribArray(vertexTexCoordLoc); glVertexAttribPointer(vertexTexCoordLoc, 2, GL_FLOAT, GL_FALSE, 0, (char*)NULL); } // Bind the VBO of indices mVBOIndices.bind(); // Unbind the VAO mVAO.unbind(); // Unbind the shader shader.unbind(); } // Reset the transform void Capsule::resetTransform(const rp3d::Transform& transform) { // Reset the transform mRigidBody->setTransform(transform); mRigidBody->setIsSleeping(false); // Reset the velocity of the rigid body rp3d::RigidBody* rigidBody = dynamic_cast(mRigidBody); if (rigidBody != NULL) { rigidBody->setLinearVelocity(rp3d::Vector3(0, 0, 0)); rigidBody->setAngularVelocity(rp3d::Vector3(0, 0, 0)); } updateTransform(1.0f); }