/******************************************************************************** * ReactPhysics3D physics library, http://www.reactphysics3d.com * * Copyright (c) 2010-2015 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ // Libraries #include "Cylinder.h" // Constructor Cylinder::Cylinder(float radius, float height, const openglframework::Vector3& position, reactphysics3d::CollisionWorld* world, const std::string& meshFolderPath) : openglframework::Mesh(), mRadius(radius), mHeight(height) { // Load the mesh from a file openglframework::MeshReaderWriter::loadMeshFromFile(meshFolderPath + "cylinder.obj", *this); // Calculate the normals of the mesh calculateNormals(); // Compute the scaling matrix mScalingMatrix = openglframework::Matrix4(mRadius, 0, 0, 0, 0, mHeight, 0, 0, 0, 0, mRadius, 0, 0, 0, 0, 1); // Initialize the position where the cylinder will be rendered translateWorld(position); // Create the collision shape for the rigid body (cylinder shape) // ReactPhysics3D will clone this object to create an internal one. Therefore, // it is OK if this object is destroyed right after calling RigidBody::addCollisionShape() const rp3d::CylinderShape collisionShape(mRadius, mHeight); // Initial position and orientation of the rigid body rp3d::Vector3 initPosition(position.x, position.y, position.z); rp3d::Quaternion initOrientation = rp3d::Quaternion::identity(); rp3d::Transform transform(initPosition, initOrientation); // Create a rigid body corresponding to the cylinder in the dynamics world mRigidBody = world->createCollisionBody(transform); // Add a collision shape to the body and specify the mass of the shape mRigidBody->addCollisionShape(collisionShape, rp3d::Transform::identity()); mTransformMatrix = mTransformMatrix * mScalingMatrix; } // Constructor Cylinder::Cylinder(float radius, float height, const openglframework::Vector3& position, float mass, reactphysics3d::DynamicsWorld* dynamicsWorld, const std::string& meshFolderPath) : openglframework::Mesh(), mRadius(radius), mHeight(height) { // Load the mesh from a file openglframework::MeshReaderWriter::loadMeshFromFile(meshFolderPath + "cylinder.obj", *this); // Calculate the normals of the mesh calculateNormals(); // Compute the scaling matrix mScalingMatrix = openglframework::Matrix4(mRadius, 0, 0, 0, 0, mHeight, 0, 0, 0, 0, mRadius, 0, 0, 0, 0, 1); // Initialize the position where the cylinder will be rendered translateWorld(position); // Create the collision shape for the rigid body (cylinder shape) // ReactPhysics3D will clone this object to create an internal one. Therefore, // it is OK if this object is destroyed right after calling RigidBody::addCollisionShape() const rp3d::CylinderShape collisionShape(mRadius, mHeight); // Initial position and orientation of the rigid body rp3d::Vector3 initPosition(position.x, position.y, position.z); rp3d::Quaternion initOrientation = rp3d::Quaternion::identity(); rp3d::Transform transform(initPosition, initOrientation); // Create a rigid body corresponding to the cylinder in the dynamics world rp3d::RigidBody* body = dynamicsWorld->createRigidBody(transform); // Add a collision shape to the body and specify the mass of the shape body->addCollisionShape(collisionShape, rp3d::Transform::identity(), mass); mTransformMatrix = mTransformMatrix * mScalingMatrix; mRigidBody = body; } // Destructor Cylinder::~Cylinder() { // Destroy the mesh destroy(); } // Render the cylinder at the correct position and with the correct orientation void Cylinder::render(openglframework::Shader& shader, const openglframework::Matrix4& worldToCameraMatrix) { // Bind the shader shader.bind(); // Set the model to camera matrix const openglframework::Matrix4 localToCameraMatrix = worldToCameraMatrix * mTransformMatrix; shader.setMatrix4x4Uniform("localToCameraMatrix", localToCameraMatrix); // Set the normal matrix (inverse transpose of the 3x3 upper-left sub matrix of the // model-view matrix) const openglframework::Matrix3 normalMatrix = localToCameraMatrix.getUpperLeft3x3Matrix().getInverse().getTranspose(); shader.setMatrix3x3Uniform("normalMatrix", normalMatrix); glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_NORMAL_ARRAY); if (hasTexture()) { glEnableClientState(GL_TEXTURE_COORD_ARRAY); } glVertexPointer(3, GL_FLOAT, 0, getVerticesPointer()); glNormalPointer(GL_FLOAT, 0, getNormalsPointer()); if(hasTexture()) { glTexCoordPointer(2, GL_FLOAT, 0, getUVTextureCoordinatesPointer()); } // For each part of the mesh for (unsigned int i=0; igetInterpolatedTransform(); // Compute the transform used for rendering the cylinder rp3d::decimal matrix[16]; transform.getOpenGLMatrix(matrix); openglframework::Matrix4 newMatrix(matrix[0], matrix[4], matrix[8], matrix[12], matrix[1], matrix[5], matrix[9], matrix[13], matrix[2], matrix[6], matrix[10], matrix[14], matrix[3], matrix[7], matrix[11], matrix[15]); // Apply the scaling matrix to have the correct cylinder dimensions mTransformMatrix = newMatrix * mScalingMatrix; }