/******************************************************************************** * ReactPhysics3D physics library, http://www.reactphysics3d.com * * Copyright (c) 2010-2015 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ #ifndef REACTPHYSICS3D_TRIANGLE_SHAPE_H #define REACTPHYSICS3D_TRIANGLE_SHAPE_H // Libraries #include "mathematics/mathematics.h" #include "ConvexShape.h" /// ReactPhysics3D namespace namespace reactphysics3d { /// Raycast test side for the triangle enum TriangleRaycastSide { /// Raycast against front triangle FRONT, /// Raycast against back triangle BACK, /// Raycast against front and back triangle FRONT_AND_BACK }; // Class TriangleShape /** * This class represents a triangle collision shape that is centered * at the origin and defined three points. */ class TriangleShape : public ConvexShape { protected: // -------------------- Attribute -------------------- // /// Three points of the triangle Vector3 mPoints[3]; /// Raycast test type for the triangle (front, back, front-back) TriangleRaycastSide mRaycastTestType; // -------------------- Methods -------------------- // /// Private copy-constructor TriangleShape(const TriangleShape& shape); /// Private assignment operator TriangleShape& operator=(const TriangleShape& shape); /// Return a local support point in a given direction without the object margin virtual Vector3 getLocalSupportPointWithoutMargin(const Vector3& direction, void** cachedCollisionData) const; /// Return true if a point is inside the collision shape virtual bool testPointInside(const Vector3& localPoint, ProxyShape* proxyShape) const; /// Raycast method with feedback information virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const; /// Return the number of bytes used by the collision shape virtual size_t getSizeInBytes() const; public: // -------------------- Methods -------------------- // /// Constructor TriangleShape(const Vector3& point1, const Vector3& point2, const Vector3& point3, decimal margin = OBJECT_MARGIN); /// Destructor virtual ~TriangleShape(); /// Return the local bounds of the shape in x, y and z directions. virtual void getLocalBounds(Vector3& min, Vector3& max) const; /// Set the local scaling vector of the collision shape virtual void setLocalScaling(const Vector3& scaling); /// Return the local inertia tensor of the collision shape virtual void computeLocalInertiaTensor(Matrix3x3& tensor, decimal mass) const; /// Update the AABB of a body using its collision shape virtual void computeAABB(AABB& aabb, const Transform& transform) const; /// Return the raycast test type (front, back, front-back) TriangleRaycastSide getRaycastTestType() const; // Set the raycast test type (front, back, front-back) void setRaycastTestType(TriangleRaycastSide testType); /// Return the coordinates of a given vertex of the triangle Vector3 getVertex(int index) const; // ---------- Friendship ---------- // friend class ConcaveMeshRaycastCallback; }; // Return the number of bytes used by the collision shape inline size_t TriangleShape::getSizeInBytes() const { return sizeof(TriangleShape); } // Return a local support point in a given direction without the object margin inline Vector3 TriangleShape::getLocalSupportPointWithoutMargin(const Vector3& direction, void** cachedCollisionData) const { Vector3 dotProducts(direction.dot(mPoints[0]), direction.dot(mPoints[1]), direction.dot(mPoints[2])); return mPoints[dotProducts.getMaxAxis()]; } // Return the local bounds of the shape in x, y and z directions. // This method is used to compute the AABB of the box /** * @param min The minimum bounds of the shape in local-space coordinates * @param max The maximum bounds of the shape in local-space coordinates */ inline void TriangleShape::getLocalBounds(Vector3& min, Vector3& max) const { const Vector3 xAxis(mPoints[0].x, mPoints[1].x, mPoints[2].x); const Vector3 yAxis(mPoints[0].y, mPoints[1].y, mPoints[2].y); const Vector3 zAxis(mPoints[0].z, mPoints[1].z, mPoints[2].z); min.setAllValues(xAxis.getMinValue(), yAxis.getMinValue(), zAxis.getMinValue()); max.setAllValues(xAxis.getMaxValue(), yAxis.getMaxValue(), zAxis.getMaxValue()); min -= Vector3(mMargin, mMargin, mMargin); max += Vector3(mMargin, mMargin, mMargin); } // Set the local scaling vector of the collision shape inline void TriangleShape::setLocalScaling(const Vector3& scaling) { mPoints[0] = (mPoints[0] / mScaling) * scaling; mPoints[1] = (mPoints[1] / mScaling) * scaling; mPoints[2] = (mPoints[2] / mScaling) * scaling; CollisionShape::setLocalScaling(scaling); } // Return the local inertia tensor of the triangle shape /** * @param[out] tensor The 3x3 inertia tensor matrix of the shape in local-space * coordinates * @param mass Mass to use to compute the inertia tensor of the collision shape */ inline void TriangleShape::computeLocalInertiaTensor(Matrix3x3& tensor, decimal mass) const { tensor.setToZero(); } // Update the AABB of a body using its collision shape /** * @param[out] aabb The axis-aligned bounding box (AABB) of the collision shape * computed in world-space coordinates * @param transform Transform used to compute the AABB of the collision shape */ inline void TriangleShape::computeAABB(AABB& aabb, const Transform& transform) const { const Vector3 worldPoint1 = transform * mPoints[0]; const Vector3 worldPoint2 = transform * mPoints[1]; const Vector3 worldPoint3 = transform * mPoints[2]; const Vector3 xAxis(worldPoint1.x, worldPoint2.x, worldPoint3.x); const Vector3 yAxis(worldPoint1.y, worldPoint2.y, worldPoint3.y); const Vector3 zAxis(worldPoint1.z, worldPoint2.z, worldPoint3.z); aabb.setMin(Vector3(xAxis.getMinValue(), yAxis.getMinValue(), zAxis.getMinValue())); aabb.setMax(Vector3(xAxis.getMaxValue(), yAxis.getMaxValue(), zAxis.getMaxValue())); } // Return true if a point is inside the collision shape inline bool TriangleShape::testPointInside(const Vector3& localPoint, ProxyShape* proxyShape) const { return false; } // Return the raycast test type (front, back, front-back) inline TriangleRaycastSide TriangleShape::getRaycastTestType() const { return mRaycastTestType; } // Set the raycast test type (front, back, front-back) /** * @param testType Raycast test type for the triangle (front, back, front-back) */ inline void TriangleShape::setRaycastTestType(TriangleRaycastSide testType) { mRaycastTestType = testType; } // Return the coordinates of a given vertex of the triangle /** * @param index Index (0 to 2) of a vertex of the triangle */ inline Vector3 TriangleShape::getVertex(int index) const { assert(index >= 0 && index < 3); return mPoints[index]; } } #endif