/******************************************************************************** * ReactPhysics3D physics library, http://www.reactphysics3d.com * * Copyright (c) 2010-2016 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ #ifndef TIMER_H #define TIMER_H // Libraries #include #include #include #include #include "configuration.h" #if defined(WINDOWS_OS) // For Windows platform #define NOMINMAX // This is used to avoid definition of max() and min() macros #include #else // For Mac OS or Linux platform #include #endif // Class Timer /** * This class will take care of the time in the physics engine. It * uses functions that depend on the current platform to get the * current time. */ class Timer { private : // -------------------- Attributes -------------------- // /// Last time the timer has been updated long double mLastUpdateTime; /// Time difference between the two last timer update() calls long double mDeltaTime; /// Used to fix the time step and avoid strange time effects double mAccumulator; /// True if the timer is running bool mIsRunning; // -------------------- Methods -------------------- // /// Private copy-constructor Timer(const Timer& timer); /// Private assignment operator Timer& operator=(const Timer& timer); public : // -------------------- Methods -------------------- // /// Constructor Timer(); /// Destructor ~Timer(); /// Return the current time of the physics engine long double getPhysicsTime() const; /// Start the timer void start(); /// Stop the timer void stop(); /// Return true if the timer is running bool isRunning() const; /// True if it's possible to take a new step bool isPossibleToTakeStep(float timeStep) const; /// Compute the time since the last update() call and add it to the accumulator void update(); /// Take a new step => update the timer by adding the timeStep value to the current time void nextStep(float timeStep); /// Compute the interpolation factor float computeInterpolationFactor(float timeStep); /// Return the current time of the system in seconds static long double getCurrentSystemTime(); }; // Return the current time inline long double Timer::getPhysicsTime() const { return mLastUpdateTime; } // Return if the timer is running inline bool Timer::isRunning() const { return mIsRunning; } // Start the timer inline void Timer::start() { if (!mIsRunning) { // Get the current system time mLastUpdateTime = getCurrentSystemTime(); mAccumulator = 0.0; mIsRunning = true; } } // Stop the timer inline void Timer::stop() { mIsRunning = false; } // True if it's possible to take a new step inline bool Timer::isPossibleToTakeStep(float timeStep) const { return (mAccumulator >= timeStep); } // Take a new step => update the timer by adding the timeStep value to the current time inline void Timer::nextStep(float timeStep) { assert(mIsRunning); // Update the accumulator value mAccumulator -= timeStep; } // Compute the interpolation factor inline float Timer::computeInterpolationFactor(float timeStep) { return (float(mAccumulator) / timeStep); } // Compute the time since the last update() call and add it to the accumulator inline void Timer::update() { // Get the current system time long double currentTime = getCurrentSystemTime(); // Compute the delta display time between two display frames mDeltaTime = currentTime - mLastUpdateTime; // Update the current display time mLastUpdateTime = currentTime; // Update the accumulator value mAccumulator += mDeltaTime; } #endif