/******************************************************************************** * ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ * * Copyright (c) 2010-2013 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ // Libraries #include "CapsuleShape.h" #include "../../configuration.h" #include using namespace reactphysics3d; // Constructor CapsuleShape::CapsuleShape(decimal radius, decimal height) : CollisionShape(CAPSULE, radius), mRadius(radius), mHalfHeight(height * decimal(0.5)) { assert(radius > decimal(0.0)); assert(height > decimal(0.0)); } // Private copy-constructor CapsuleShape::CapsuleShape(const CapsuleShape& shape) : CollisionShape(shape), mRadius(shape.mRadius), mHalfHeight(shape.mHalfHeight) { } // Destructor CapsuleShape::~CapsuleShape() { } // Return a local support point in a given direction with the object margin. /// A capsule is the convex hull of two spheres S1 and S2. The support point in the direction "d" /// of the convex hull of a set of convex objects is the support point "p" in the set of all /// support points from all the convex objects with the maximum dot product with the direction "d". /// Therefore, in this method, we compute the support points of both top and bottom spheres of /// the capsule and return the point with the maximum dot product with the direction vector. Note /// that the object margin is implicitly the radius and height of the capsule. Vector3 CapsuleShape::getLocalSupportPointWithMargin(const Vector3& direction) { // If the direction vector is not the zero vector if (direction.lengthSquare() >= MACHINE_EPSILON * MACHINE_EPSILON) { Vector3 unitDirection = direction.getUnit(); // Support point top sphere Vector3 centerTopSphere(0, mHalfHeight, 0); Vector3 topSpherePoint = centerTopSphere + unitDirection * mRadius; decimal dotProductTop = topSpherePoint.dot(direction); // Support point bottom sphere Vector3 centerBottomSphere(0, -mHalfHeight, 0); Vector3 bottomSpherePoint = centerBottomSphere + unitDirection * mRadius; decimal dotProductBottom = bottomSpherePoint.dot(direction); // Return the point with the maximum dot product if (dotProductTop > dotProductBottom) { return topSpherePoint; } else { return bottomSpherePoint; } } // If the direction vector is the zero vector we return a point on the // boundary of the capsule return Vector3(0, mRadius, 0); } // Return a local support point in a given direction without the object margin. Vector3 CapsuleShape::getLocalSupportPointWithoutMargin(const Vector3& direction) { // If the dot product of the direction and the local Y axis (dotProduct = direction.y) // is positive if (direction.y > 0.0) { // Return the top sphere center point return Vector3(0, mHalfHeight, 0); } else { // Return the bottom sphere center point return Vector3(0, -mHalfHeight, 0); } } // Return the local inertia tensor of the capsule void CapsuleShape::computeLocalInertiaTensor(Matrix3x3& tensor, decimal mass) const { // The inertia tensor formula for a capsule can be found in : Game Engine Gems, Volume 1 decimal height = mHalfHeight + mHalfHeight; decimal radiusSquare = mRadius * mRadius; decimal heightSquare = height * height; decimal radiusSquareDouble = radiusSquare + radiusSquare; decimal factor1 = decimal(2.0) * mRadius / (decimal(4.0) * mRadius + decimal(3.0) * height); decimal factor2 = decimal(3.0) * height / (decimal(4.0) * mRadius + decimal(3.0) * height); decimal sum1 = decimal(0.4) * radiusSquareDouble; decimal sum2 = decimal(0.75) * height * mRadius + decimal(0.5) * heightSquare; decimal sum3 = decimal(0.25) * radiusSquare + decimal(1.0 / 12.0) * heightSquare; decimal IxxAndzz = factor1 * mass * (sum1 + sum2) + factor2 * mass * sum3; decimal Iyy = factor1 * mass * sum1 + factor2 * mass * decimal(0.25) * radiusSquareDouble; tensor.setAllValues(IxxAndzz, 0.0, 0.0, 0.0, Iyy, 0.0, 0.0, 0.0, IxxAndzz); }