/******************************************************************************** * ReactPhysics3D physics library, http://www.reactphysics3d.com * * Copyright (c) 2010-2018 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ // Libraries #include "CapsuleVsConvexPolyhedronAlgorithm.h" #include "SAT/SATAlgorithm.h" #include "GJK/GJKAlgorithm.h" #include "collision/shapes/CapsuleShape.h" #include "collision/shapes/ConvexPolyhedronShape.h" #include "collision/NarrowPhaseInfo.h" #include "collision/ContactPointInfo.h" #include <cassert> // We want to use the ReactPhysics3D namespace using namespace reactphysics3d; // Compute the narrow-phase collision detection between a capsule and a polyhedron // This technique is based on the "Robust Contact Creation for Physics Simulations" presentation // by Dirk Gregorius. bool CapsuleVsConvexPolyhedronAlgorithm::testCollision(NarrowPhaseInfo* narrowPhaseInfo, bool reportContacts, MemoryAllocator& memoryAllocator) { // First, we run the GJK algorithm GJKAlgorithm gjkAlgorithm; SATAlgorithm satAlgorithm(memoryAllocator); #ifdef IS_PROFILING_ACTIVE gjkAlgorithm.setProfiler(mProfiler); satAlgorithm.setProfiler(mProfiler); #endif // Get the last frame collision info LastFrameCollisionInfo* lastFrameCollisionInfo = narrowPhaseInfo->getLastFrameCollisionInfo(); GJKAlgorithm::GJKResult result = gjkAlgorithm.testCollision(narrowPhaseInfo, reportContacts); lastFrameCollisionInfo->wasUsingGJK = true; lastFrameCollisionInfo->wasUsingSAT = false; assert(narrowPhaseInfo->collisionShape1->getType() == CollisionShapeType::CONVEX_POLYHEDRON || narrowPhaseInfo->collisionShape2->getType() == CollisionShapeType::CONVEX_POLYHEDRON); assert(narrowPhaseInfo->collisionShape1->getType() == CollisionShapeType::CAPSULE || narrowPhaseInfo->collisionShape2->getType() == CollisionShapeType::CAPSULE); // If we have found a contact point inside the margins (shallow penetration) if (result == GJKAlgorithm::GJKResult::COLLIDE_IN_MARGIN) { if (reportContacts) { // GJK has found a shallow contact. If the face of the polyhedron mesh is orthogonal to the // capsule inner segment and parallel to the contact point normal, we would like to create // two contact points instead of a single one (as in the deep contact case with SAT algorithm) // Get the contact point created by GJK assert(narrowPhaseInfo->contactPoints.size() > 0); ContactPointInfo*& contactPoint = narrowPhaseInfo->contactPoints[0]; bool isCapsuleShape1 = narrowPhaseInfo->collisionShape1->getType() == CollisionShapeType::CAPSULE; // Get the collision shapes const CapsuleShape* capsuleShape = static_cast<const CapsuleShape*>(isCapsuleShape1 ? narrowPhaseInfo->collisionShape1 : narrowPhaseInfo->collisionShape2); const ConvexPolyhedronShape* polyhedron = static_cast<const ConvexPolyhedronShape*>(isCapsuleShape1 ? narrowPhaseInfo->collisionShape2 : narrowPhaseInfo->collisionShape1); // For each face of the polyhedron for (uint f = 0; f < polyhedron->getNbFaces(); f++) { const Transform polyhedronToWorld = isCapsuleShape1 ? narrowPhaseInfo->shape2ToWorldTransform : narrowPhaseInfo->shape1ToWorldTransform; const Transform capsuleToWorld = isCapsuleShape1 ? narrowPhaseInfo->shape1ToWorldTransform : narrowPhaseInfo->shape2ToWorldTransform; // Get the face normal const Vector3 faceNormal = polyhedron->getFaceNormal(f); Vector3 faceNormalWorld = polyhedronToWorld.getOrientation() * faceNormal; const Vector3 capsuleSegA(0, -capsuleShape->getHeight() * decimal(0.5), 0); const Vector3 capsuleSegB(0, capsuleShape->getHeight() * decimal(0.5), 0); Vector3 capsuleInnerSegmentDirection = capsuleToWorld.getOrientation() * (capsuleSegB - capsuleSegA); capsuleInnerSegmentDirection.normalize(); bool isFaceNormalInDirectionOfContactNormal = faceNormalWorld.dot(contactPoint->normal) > decimal(0.0); bool isFaceNormalInContactDirection = (isCapsuleShape1 && !isFaceNormalInDirectionOfContactNormal) || (!isCapsuleShape1 && isFaceNormalInDirectionOfContactNormal); // If the polyhedron face normal is orthogonal to the capsule inner segment and parallel to the contact point normal and the face normal // is in direction of the contact normal (from the polyhedron point of view). if (isFaceNormalInContactDirection && areOrthogonalVectors(faceNormalWorld, capsuleInnerSegmentDirection) && areParallelVectors(faceNormalWorld, contactPoint->normal)) { // Remove the previous contact point computed by GJK narrowPhaseInfo->resetContactPoints(); const Transform capsuleToWorld = isCapsuleShape1 ? narrowPhaseInfo->shape1ToWorldTransform : narrowPhaseInfo->shape2ToWorldTransform; const Transform polyhedronToCapsuleTransform = capsuleToWorld.getInverse() * polyhedronToWorld; // Compute the end-points of the inner segment of the capsule const Vector3 capsuleSegA(0, -capsuleShape->getHeight() * decimal(0.5), 0); const Vector3 capsuleSegB(0, capsuleShape->getHeight() * decimal(0.5), 0); // Convert the inner capsule segment points into the polyhedron local-space const Transform capsuleToPolyhedronTransform = polyhedronToCapsuleTransform.getInverse(); const Vector3 capsuleSegAPolyhedronSpace = capsuleToPolyhedronTransform * capsuleSegA; const Vector3 capsuleSegBPolyhedronSpace = capsuleToPolyhedronTransform * capsuleSegB; const Vector3 separatingAxisCapsuleSpace = polyhedronToCapsuleTransform.getOrientation() * faceNormal; if (isCapsuleShape1) { faceNormalWorld = -faceNormalWorld; } // Compute and create two contact points bool contactsFound = satAlgorithm.computeCapsulePolyhedronFaceContactPoints(f, capsuleShape->getRadius(), polyhedron, contactPoint->penetrationDepth, polyhedronToCapsuleTransform, faceNormalWorld, separatingAxisCapsuleSpace, capsuleSegAPolyhedronSpace, capsuleSegBPolyhedronSpace, narrowPhaseInfo, isCapsuleShape1); if (!contactsFound) { return false; } break; } } } lastFrameCollisionInfo->wasUsingSAT = false; lastFrameCollisionInfo->wasUsingGJK = false; // Return true return true; } // If we have overlap even without the margins (deep penetration) if (result == GJKAlgorithm::GJKResult::INTERPENETRATE) { // Run the SAT algorithm to find the separating axis and compute contact point bool isColliding = satAlgorithm.testCollisionCapsuleVsConvexPolyhedron(narrowPhaseInfo, reportContacts); lastFrameCollisionInfo->wasUsingGJK = false; lastFrameCollisionInfo->wasUsingSAT = true; return isColliding; } return false; }