/******************************************************************************** * ReactPhysics3D physics library, http://www.reactphysics3d.com * * Copyright (c) 2010-2018 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ // Libraries #include "systems/SolveFixedJointSystem.h" #include "engine/PhysicsWorld.h" #include "body/RigidBody.h" using namespace reactphysics3d; // Static variables definition const decimal SolveFixedJointSystem::BETA = decimal(0.2); // Constructor SolveFixedJointSystem::SolveFixedJointSystem(PhysicsWorld& world, RigidBodyComponents& rigidBodyComponents, TransformComponents& transformComponents, JointComponents& jointComponents, FixedJointComponents& fixedJointComponents) :mWorld(world), mRigidBodyComponents(rigidBodyComponents), mTransformComponents(transformComponents), mJointComponents(jointComponents), mFixedJointComponents(fixedJointComponents), mTimeStep(0), mIsWarmStartingActive(true) { } // Initialize before solving the constraint void SolveFixedJointSystem::initBeforeSolve() { // For each joint for (uint32 i=0; i < mFixedJointComponents.getNbEnabledComponents(); i++) { const Entity jointEntity = mFixedJointComponents.mJointEntities[i]; // Get the bodies entities const Entity body1Entity = mJointComponents.getBody1Entity(jointEntity); const Entity body2Entity = mJointComponents.getBody2Entity(jointEntity); assert(!mRigidBodyComponents.getIsEntityDisabled(body1Entity)); assert(!mRigidBodyComponents.getIsEntityDisabled(body2Entity)); // Get the inertia tensor of bodies mFixedJointComponents.mI1[i] = RigidBody::getInertiaTensorInverseWorld(mWorld, body1Entity); mFixedJointComponents.mI2[i] = RigidBody::getInertiaTensorInverseWorld(mWorld, body2Entity); } // For each joint for (uint32 i=0; i < mFixedJointComponents.getNbEnabledComponents(); i++) { const Entity jointEntity = mFixedJointComponents.mJointEntities[i]; // Get the bodies entities const Entity body1Entity = mJointComponents.getBody1Entity(jointEntity); const Entity body2Entity = mJointComponents.getBody2Entity(jointEntity); const Quaternion& orientationBody1 = mTransformComponents.getTransform(body1Entity).getOrientation(); const Quaternion& orientationBody2 = mTransformComponents.getTransform(body2Entity).getOrientation(); // Compute the vector from body center to the anchor point in world-space mFixedJointComponents.mR1World[i] = orientationBody1 * mFixedJointComponents.mLocalAnchorPointBody1[i]; mFixedJointComponents.mR2World[i] = orientationBody2 * mFixedJointComponents.mLocalAnchorPointBody2[i]; } // For each joint for (uint32 i=0; i < mFixedJointComponents.getNbEnabledComponents(); i++) { const Entity jointEntity = mFixedJointComponents.mJointEntities[i]; // Get the bodies entities const Entity body1Entity = mJointComponents.getBody1Entity(jointEntity); const Entity body2Entity = mJointComponents.getBody2Entity(jointEntity); // Compute the corresponding skew-symmetric matrices Matrix3x3 skewSymmetricMatrixU1 = Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(mFixedJointComponents.mR1World[i]); Matrix3x3 skewSymmetricMatrixU2 = Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(mFixedJointComponents.mR2World[i]); const uint32 componentIndexBody1 = mRigidBodyComponents.getEntityIndex(body1Entity); const uint32 componentIndexBody2 = mRigidBodyComponents.getEntityIndex(body2Entity); // Compute the matrix K=JM^-1J^t (3x3 matrix) for the 3 translation constraints const decimal body1MassInverse = mRigidBodyComponents.mInverseMasses[componentIndexBody1]; const decimal body2MassInverse = mRigidBodyComponents.mInverseMasses[componentIndexBody2]; const decimal inverseMassBodies = body1MassInverse + body2MassInverse; Matrix3x3 massMatrix = Matrix3x3(inverseMassBodies, 0, 0, 0, inverseMassBodies, 0, 0, 0, inverseMassBodies) + skewSymmetricMatrixU1 * mFixedJointComponents.mI1[i] * skewSymmetricMatrixU1.getTranspose() + skewSymmetricMatrixU2 * mFixedJointComponents.mI2[i] * skewSymmetricMatrixU2.getTranspose(); // Compute the inverse mass matrix K^-1 for the 3 translation constraints mFixedJointComponents.mInverseMassMatrixTranslation[i].setToZero(); if (mRigidBodyComponents.mBodyTypes[componentIndexBody1] == BodyType::DYNAMIC || mRigidBodyComponents.mBodyTypes[componentIndexBody2] == BodyType::DYNAMIC) { mFixedJointComponents.mInverseMassMatrixTranslation[i] = massMatrix.getInverse(); } } const decimal biasFactor = BETA / mTimeStep; // For each joint for (uint32 i=0; i < mFixedJointComponents.getNbEnabledComponents(); i++) { const Entity jointEntity = mFixedJointComponents.mJointEntities[i]; // Get the bodies entities const Entity body1Entity = mJointComponents.getBody1Entity(jointEntity); const Entity body2Entity = mJointComponents.getBody2Entity(jointEntity); // Get the bodies positions and orientations const Vector3& x1 = mRigidBodyComponents.getCenterOfMassWorld(body1Entity); const Vector3& x2 = mRigidBodyComponents.getCenterOfMassWorld(body2Entity); const Vector3& r1World = mFixedJointComponents.mR1World[i]; const Vector3& r2World = mFixedJointComponents.mR2World[i]; // Compute the bias "b" of the constraint for the 3 translation constraints mFixedJointComponents.mBiasTranslation[i].setToZero(); if (mJointComponents.getPositionCorrectionTechnique(jointEntity) == JointsPositionCorrectionTechnique::BAUMGARTE_JOINTS) { mFixedJointComponents.mBiasTranslation[i] = biasFactor * (x2 + r2World - x1 - r1World); } } // For each joint for (uint32 i=0; i < mFixedJointComponents.getNbEnabledComponents(); i++) { const Entity jointEntity = mFixedJointComponents.mJointEntities[i]; // Get the bodies entities const Entity body1Entity = mJointComponents.getBody1Entity(jointEntity); const Entity body2Entity = mJointComponents.getBody2Entity(jointEntity); // Compute the inverse of the mass matrix K=JM^-1J^t for the 3 rotation contraints (3x3 matrix) mFixedJointComponents.mInverseMassMatrixRotation[i] = mFixedJointComponents.mI1[i] + mFixedJointComponents.mI2[i]; if (mRigidBodyComponents.getBodyType(body1Entity) == BodyType::DYNAMIC || mRigidBodyComponents.getBodyType(body2Entity) == BodyType::DYNAMIC) { mFixedJointComponents.mInverseMassMatrixRotation[i] = mFixedJointComponents.mInverseMassMatrixRotation[i].getInverse(); } } // For each joint for (uint32 i=0; i < mFixedJointComponents.getNbEnabledComponents(); i++) { const Entity jointEntity = mFixedJointComponents.mJointEntities[i]; // Get the bodies entities const Entity body1Entity = mJointComponents.getBody1Entity(jointEntity); const Entity body2Entity = mJointComponents.getBody2Entity(jointEntity); // Compute the bias "b" for the 3 rotation constraints mFixedJointComponents.mBiasRotation[i].setToZero(); const Quaternion& orientationBody1 = mTransformComponents.getTransform(body1Entity).getOrientation(); const Quaternion& orientationBody2 = mTransformComponents.getTransform(body2Entity).getOrientation(); if (mJointComponents.getPositionCorrectionTechnique(jointEntity) == JointsPositionCorrectionTechnique::BAUMGARTE_JOINTS) { const Quaternion qError = orientationBody2 * mFixedJointComponents.mInitOrientationDifferenceInv[i] * orientationBody1.getInverse(); mFixedJointComponents.mBiasRotation[i] = biasFactor * decimal(2.0) * qError.getVectorV(); } } // If warm-starting is not enabled if (!mIsWarmStartingActive) { // For each joint for (uint32 i=0; i < mFixedJointComponents.getNbEnabledComponents(); i++) { // Reset the accumulated impulses mFixedJointComponents.mImpulseTranslation[i].setToZero(); mFixedJointComponents.mImpulseRotation[i].setToZero(); } } } // Warm start the constraint (apply the previous impulse at the beginning of the step) void SolveFixedJointSystem::warmstart() { // For each joint for (uint32 i=0; i < mFixedJointComponents.getNbEnabledComponents(); i++) { const Entity jointEntity = mFixedJointComponents.mJointEntities[i]; // Get the bodies entities const Entity body1Entity = mJointComponents.getBody1Entity(jointEntity); const Entity body2Entity = mJointComponents.getBody2Entity(jointEntity); const uint32 componentIndexBody1 = mRigidBodyComponents.getEntityIndex(body1Entity); const uint32 componentIndexBody2 = mRigidBodyComponents.getEntityIndex(body2Entity); // Get the velocities Vector3& v1 = mRigidBodyComponents.mConstrainedLinearVelocities[componentIndexBody1]; Vector3& v2 = mRigidBodyComponents.mConstrainedLinearVelocities[componentIndexBody2]; Vector3& w1 = mRigidBodyComponents.mConstrainedAngularVelocities[componentIndexBody1]; Vector3& w2 = mRigidBodyComponents.mConstrainedAngularVelocities[componentIndexBody2]; // Get the inverse mass of the bodies const decimal inverseMassBody1 = mRigidBodyComponents.mInverseMasses[componentIndexBody1]; const decimal inverseMassBody2 = mRigidBodyComponents.mInverseMasses[componentIndexBody2]; const Vector3& impulseTranslation = mFixedJointComponents.mImpulseTranslation[i]; const Vector3& impulseRotation = mFixedJointComponents.mImpulseRotation[i]; const Vector3& r1World = mFixedJointComponents.mR1World[i]; const Vector3& r2World = mFixedJointComponents.mR2World[i]; // Compute the impulse P=J^T * lambda for the 3 translation constraints for body 1 Vector3 linearImpulseBody1 = -impulseTranslation; Vector3 angularImpulseBody1 = impulseTranslation.cross(r1World); // Compute the impulse P=J^T * lambda for the 3 rotation constraints for body 1 angularImpulseBody1 += -impulseRotation; const Matrix3x3& i1 = mFixedJointComponents.mI1[i]; // Apply the impulse to the body 1 v1 += inverseMassBody1 * linearImpulseBody1; w1 += i1 * angularImpulseBody1; // Compute the impulse P=J^T * lambda for the 3 translation constraints for body 2 Vector3 angularImpulseBody2 = -impulseTranslation.cross(r2World); // Compute the impulse P=J^T * lambda for the 3 rotation constraints for body 2 angularImpulseBody2 += impulseRotation; const Matrix3x3& i2 = mFixedJointComponents.mI2[i]; // Apply the impulse to the body 2 v2 += inverseMassBody2 * impulseTranslation; w2 += i2 * angularImpulseBody2; } } // Solve the velocity constraint void SolveFixedJointSystem::solveVelocityConstraint() { // For each joint for (uint32 i=0; i < mFixedJointComponents.getNbEnabledComponents(); i++) { const Entity jointEntity = mFixedJointComponents.mJointEntities[i]; // Get the bodies entities const Entity body1Entity = mJointComponents.getBody1Entity(jointEntity); const Entity body2Entity = mJointComponents.getBody2Entity(jointEntity); const uint32 componentIndexBody1 = mRigidBodyComponents.getEntityIndex(body1Entity); const uint32 componentIndexBody2 = mRigidBodyComponents.getEntityIndex(body2Entity); // Get the velocities Vector3& v1 = mRigidBodyComponents.mConstrainedLinearVelocities[componentIndexBody1]; Vector3& v2 = mRigidBodyComponents.mConstrainedLinearVelocities[componentIndexBody2]; Vector3& w1 = mRigidBodyComponents.mConstrainedAngularVelocities[componentIndexBody1]; Vector3& w2 = mRigidBodyComponents.mConstrainedAngularVelocities[componentIndexBody2]; // Get the inverse mass of the bodies decimal inverseMassBody1 = mRigidBodyComponents.mInverseMasses[componentIndexBody1]; decimal inverseMassBody2 = mRigidBodyComponents.mInverseMasses[componentIndexBody2]; const Vector3& r1World = mFixedJointComponents.mR1World[i]; const Vector3& r2World = mFixedJointComponents.mR2World[i]; // --------------- Translation Constraints --------------- // // Compute J*v for the 3 translation constraints const Vector3 JvTranslation = v2 + w2.cross(r2World) - v1 - w1.cross(r1World); const Matrix3x3& inverseMassMatrixTranslation = mFixedJointComponents.mInverseMassMatrixTranslation[i]; // Compute the Lagrange multiplier lambda const Vector3 deltaLambda = inverseMassMatrixTranslation * (-JvTranslation - mFixedJointComponents.mBiasTranslation[i]); mFixedJointComponents.mImpulseTranslation[i] += deltaLambda; // Compute the impulse P=J^T * lambda for body 1 const Vector3 linearImpulseBody1 = -deltaLambda; Vector3 angularImpulseBody1 = deltaLambda.cross(r1World); const Matrix3x3& i1 = mFixedJointComponents.mI1[i]; // Apply the impulse to the body 1 v1 += inverseMassBody1 * linearImpulseBody1; w1 += i1 * angularImpulseBody1; // Compute the impulse P=J^T * lambda for body 2 const Vector3 angularImpulseBody2 = -deltaLambda.cross(r2World); const Matrix3x3& i2 = mFixedJointComponents.mI2[i]; // Apply the impulse to the body 2 v2 += inverseMassBody2 * deltaLambda; w2 += i2 * angularImpulseBody2; // --------------- Rotation Constraints --------------- // // Compute J*v for the 3 rotation constraints const Vector3 JvRotation = w2 - w1; const Vector3& biasRotation = mFixedJointComponents.mBiasRotation[i]; const Matrix3x3& inverseMassMatrixRotation = mFixedJointComponents.mInverseMassMatrixRotation[i]; // Compute the Lagrange multiplier lambda for the 3 rotation constraints Vector3 deltaLambda2 = inverseMassMatrixRotation * (-JvRotation - biasRotation); mFixedJointComponents.mImpulseRotation[i] += deltaLambda2; // Compute the impulse P=J^T * lambda for the 3 rotation constraints for body 1 angularImpulseBody1 = -deltaLambda2; // Apply the impulse to the body 1 w1 += i1 * angularImpulseBody1; // Apply the impulse to the body 2 w2 += i2 * deltaLambda2; } } // Solve the position constraint (for position error correction) void SolveFixedJointSystem::solvePositionConstraint() { // For each joint for (uint32 i=0; i < mFixedJointComponents.getNbEnabledComponents(); i++) { const Entity jointEntity = mFixedJointComponents.mJointEntities[i]; // If the error position correction technique is not the non-linear-gauss-seidel, we do // do not execute this method if (mJointComponents.getPositionCorrectionTechnique(jointEntity) != JointsPositionCorrectionTechnique::NON_LINEAR_GAUSS_SEIDEL) continue; // Get the bodies entities const Entity body1Entity = mJointComponents.getBody1Entity(jointEntity); const Entity body2Entity = mJointComponents.getBody2Entity(jointEntity); // Recompute the inverse inertia tensors mFixedJointComponents.mI1[i] = RigidBody::getInertiaTensorInverseWorld(mWorld, body1Entity); mFixedJointComponents.mI2[i] = RigidBody::getInertiaTensorInverseWorld(mWorld, body2Entity); } // For each joint for (uint32 i=0; i < mFixedJointComponents.getNbEnabledComponents(); i++) { const Entity jointEntity = mFixedJointComponents.mJointEntities[i]; // If the error position correction technique is not the non-linear-gauss-seidel, we do // do not execute this method if (mJointComponents.getPositionCorrectionTechnique(jointEntity) != JointsPositionCorrectionTechnique::NON_LINEAR_GAUSS_SEIDEL) continue; // Get the bodies entities const Entity body1Entity = mJointComponents.getBody1Entity(jointEntity); const Entity body2Entity = mJointComponents.getBody2Entity(jointEntity); // Get the bodies positions and orientations const Quaternion& q1 = mRigidBodyComponents.getConstrainedOrientation(body1Entity); const Quaternion& q2 = mRigidBodyComponents.getConstrainedOrientation(body2Entity); // Compute the vector from body center to the anchor point in world-space mFixedJointComponents.mR1World[i] = q1 * mFixedJointComponents.getLocalAnchorPointBody1(jointEntity); mFixedJointComponents.mR2World[i] = q2 * mFixedJointComponents.getLocalAnchorPointBody2(jointEntity); } // For each joint for (uint32 i=0; i < mFixedJointComponents.getNbEnabledComponents(); i++) { const Entity jointEntity = mFixedJointComponents.mJointEntities[i]; // If the error position correction technique is not the non-linear-gauss-seidel, we do // do not execute this method if (mJointComponents.getPositionCorrectionTechnique(jointEntity) != JointsPositionCorrectionTechnique::NON_LINEAR_GAUSS_SEIDEL) continue; // Get the bodies entities const Entity body1Entity = mJointComponents.getBody1Entity(jointEntity); const Entity body2Entity = mJointComponents.getBody2Entity(jointEntity); const uint32 componentIndexBody1 = mRigidBodyComponents.getEntityIndex(body1Entity); const uint32 componentIndexBody2 = mRigidBodyComponents.getEntityIndex(body2Entity); // Get the inverse mass and inverse inertia tensors of the bodies decimal inverseMassBody1 = mRigidBodyComponents.mInverseMasses[componentIndexBody1]; decimal inverseMassBody2 = mRigidBodyComponents.mInverseMasses[componentIndexBody2]; const Vector3& r1World = mFixedJointComponents.mR1World[i]; const Vector3& r2World = mFixedJointComponents.mR2World[i]; // Compute the corresponding skew-symmetric matrices Matrix3x3 skewSymmetricMatrixU1= Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(r1World); Matrix3x3 skewSymmetricMatrixU2= Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(r2World); // --------------- Translation Constraints --------------- // // Compute the matrix K=JM^-1J^t (3x3 matrix) for the 3 translation constraints decimal inverseMassBodies = inverseMassBody1 + inverseMassBody2; Matrix3x3 massMatrix = Matrix3x3(inverseMassBodies, 0, 0, 0, inverseMassBodies, 0, 0, 0, inverseMassBodies) + skewSymmetricMatrixU1 * mFixedJointComponents.mI1[i] * skewSymmetricMatrixU1.getTranspose() + skewSymmetricMatrixU2 * mFixedJointComponents.mI2[i] * skewSymmetricMatrixU2.getTranspose(); mFixedJointComponents.mInverseMassMatrixTranslation[i].setToZero(); if (mRigidBodyComponents.mBodyTypes[componentIndexBody1] == BodyType::DYNAMIC || mRigidBodyComponents.mBodyTypes[componentIndexBody2] == BodyType::DYNAMIC) { mFixedJointComponents.mInverseMassMatrixTranslation[i] = massMatrix.getInverse(); } } // For each joint for (uint32 i=0; i < mFixedJointComponents.getNbEnabledComponents(); i++) { const Entity jointEntity = mFixedJointComponents.mJointEntities[i]; // If the error position correction technique is not the non-linear-gauss-seidel, we do // do not execute this method if (mJointComponents.getPositionCorrectionTechnique(jointEntity) != JointsPositionCorrectionTechnique::NON_LINEAR_GAUSS_SEIDEL) continue; // Get the bodies entities const Entity body1Entity = mJointComponents.getBody1Entity(jointEntity); const Entity body2Entity = mJointComponents.getBody2Entity(jointEntity); const Vector3& r1World = mFixedJointComponents.mR1World[i]; const Vector3& r2World = mFixedJointComponents.mR2World[i]; const uint32 componentIndexBody1 = mRigidBodyComponents.getEntityIndex(body1Entity); const uint32 componentIndexBody2 = mRigidBodyComponents.getEntityIndex(body2Entity); Vector3& x1 = mRigidBodyComponents.mConstrainedPositions[componentIndexBody1]; Vector3& x2 = mRigidBodyComponents.mConstrainedPositions[componentIndexBody2]; Quaternion& q1 = mRigidBodyComponents.mConstrainedOrientations[componentIndexBody1]; Quaternion& q2 = mRigidBodyComponents.mConstrainedOrientations[componentIndexBody2]; // Compute position error for the 3 translation constraints const Vector3 errorTranslation = x2 + r2World - x1 - r1World; // Compute the Lagrange multiplier lambda const Vector3 lambdaTranslation = mFixedJointComponents.mInverseMassMatrixTranslation[i] * (-errorTranslation); // Compute the impulse of body 1 Vector3 linearImpulseBody1 = -lambdaTranslation; Vector3 angularImpulseBody1 = lambdaTranslation.cross(r1World); const decimal inverseMassBody1 = mRigidBodyComponents.mInverseMasses[componentIndexBody1]; // Compute the pseudo velocity of body 1 const Vector3 v1 = inverseMassBody1 * linearImpulseBody1; Vector3 w1 = mFixedJointComponents.mI2[i] * angularImpulseBody1; // Update the body position/orientation of body 1 x1 += v1; q1 += Quaternion(0, w1) * q1 * decimal(0.5); q1.normalize(); // Compute the impulse of body 2 Vector3 angularImpulseBody2 = -lambdaTranslation.cross(r2World); const decimal inverseMassBody2 = mRigidBodyComponents.mInverseMasses[componentIndexBody2]; // Compute the pseudo velocity of body 2 const Vector3 v2 = inverseMassBody2 * lambdaTranslation; Vector3 w2 = mFixedJointComponents.mI2[i] * angularImpulseBody2; // Update the body position/orientation of body 2 x2 += v2; q2 += Quaternion(0, w2) * q2 * decimal(0.5); q2.normalize(); // --------------- Rotation Constraints --------------- // // Compute the inverse of the mass matrix K=JM^-1J^t for the 3 rotation // contraints (3x3 matrix) mFixedJointComponents.mInverseMassMatrixRotation[i] = mFixedJointComponents.mI1[i] + mFixedJointComponents.mI2[i]; if (mRigidBodyComponents.mBodyTypes[componentIndexBody1] == BodyType::DYNAMIC || mRigidBodyComponents.mBodyTypes[componentIndexBody2] == BodyType::DYNAMIC) { mFixedJointComponents.mInverseMassMatrixRotation[i] = mFixedJointComponents.mInverseMassMatrixRotation[i].getInverse(); } // Calculate difference in rotation // // The rotation should be: // // q2 = q1 r0 // // But because of drift the actual rotation is: // // q2 = qError q1 r0 // <=> qError = q2 r0^-1 q1^-1 // // Where: // q1 = current rotation of body 1 // q2 = current rotation of body 2 // qError = error that needs to be reduced to zero Quaternion qError = q2 * mFixedJointComponents.mInitOrientationDifferenceInv[i] * q1.getInverse(); // A quaternion can be seen as: // // q = [sin(theta / 2) * v, cos(theta/2)] // // Where: // v = rotation vector // theta = rotation angle // // If we assume theta is small (error is small) then sin(x) = x so an approximation of the error angles is: const Vector3 errorRotation = decimal(2.0) * qError.getVectorV(); // Compute the Lagrange multiplier lambda for the 3 rotation constraints Vector3 lambdaRotation = mFixedJointComponents.mInverseMassMatrixRotation[i] * (-errorRotation); // Compute the impulse P=J^T * lambda for the 3 rotation constraints of body 1 angularImpulseBody1 = -lambdaRotation; // Compute the pseudo velocity of body 1 w1 = mFixedJointComponents.mI1[i] * angularImpulseBody1; // Update the body position/orientation of body 1 q1 += Quaternion(0, w1) * q1 * decimal(0.5); q1.normalize(); // Compute the pseudo velocity of body 2 w2 = mFixedJointComponents.mI2[i] * lambdaRotation; // Update the body position/orientation of body 2 q2 += Quaternion(0, w2) * q2 * decimal(0.5); q2.normalize(); } }