/******************************************************************************** * ReactPhysics3D physics library, http://www.reactphysics3d.com * * Copyright (c) 2010-2019 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ // Libraries #include #include #include #include // We want to use the ReactPhysics3D namespace using namespace reactphysics3d; // Compute the narrow-phase collision detection between a sphere and a convex polyhedron // This technique is based on the "Robust Contact Creation for Physics Simulations" presentation // by Dirk Gregorius. bool SphereVsConvexPolyhedronAlgorithm::testCollision(NarrowPhaseInfoBatch& narrowPhaseInfoBatch, uint batchStartIndex, uint batchNbItems, bool clipWithPreviousAxisIfStillColliding, MemoryAllocator& memoryAllocator) { // First, we run the GJK algorithm GJKAlgorithm gjkAlgorithm; bool isCollisionFound = false; #ifdef IS_PROFILING_ACTIVE gjkAlgorithm.setProfiler(mProfiler); #endif List gjkResults(memoryAllocator); gjkAlgorithm.testCollision(narrowPhaseInfoBatch, batchStartIndex, batchNbItems, gjkResults); assert(gjkResults.size() == batchNbItems); // For each item in the batch for (uint batchIndex = batchStartIndex; batchIndex < batchStartIndex + batchNbItems; batchIndex++) { assert(narrowPhaseInfoBatch.collisionShapes1[batchIndex]->getType() == CollisionShapeType::CONVEX_POLYHEDRON || narrowPhaseInfoBatch.collisionShapes2[batchIndex]->getType() == CollisionShapeType::CONVEX_POLYHEDRON); assert(narrowPhaseInfoBatch.collisionShapes1[batchIndex]->getType() == CollisionShapeType::SPHERE || narrowPhaseInfoBatch.collisionShapes2[batchIndex]->getType() == CollisionShapeType::SPHERE); // Get the last frame collision info LastFrameCollisionInfo* lastFrameCollisionInfo = narrowPhaseInfoBatch.lastFrameCollisionInfos[batchIndex]; lastFrameCollisionInfo->wasUsingGJK = true; lastFrameCollisionInfo->wasUsingSAT = false; // If we have found a contact point inside the margins (shallow penetration) if (gjkResults[batchIndex] == GJKAlgorithm::GJKResult::COLLIDE_IN_MARGIN) { // Return true narrowPhaseInfoBatch.isColliding[batchIndex] = true; isCollisionFound = true; continue; } // If we have overlap even without the margins (deep penetration) if (gjkResults[batchIndex] == GJKAlgorithm::GJKResult::INTERPENETRATE) { // Run the SAT algorithm to find the separating axis and compute contact point SATAlgorithm satAlgorithm(clipWithPreviousAxisIfStillColliding, memoryAllocator); #ifdef IS_PROFILING_ACTIVE satAlgorithm.setProfiler(mProfiler); #endif isCollisionFound |= satAlgorithm.testCollisionSphereVsConvexPolyhedron(narrowPhaseInfoBatch, batchIndex, 1); lastFrameCollisionInfo->wasUsingGJK = false; lastFrameCollisionInfo->wasUsingSAT = true; continue; } } return isCollisionFound; }