/******************************************************************************** * ReactPhysics3D physics library, http://www.reactphysics3d.com * * Copyright (c) 2010-2020 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ // Libraries #include #include #include using namespace reactphysics3d; // Static variables definition const decimal SolveHingeJointSystem::BETA = decimal(0.2); // Constructor SolveHingeJointSystem::SolveHingeJointSystem(PhysicsWorld& world, RigidBodyComponents& rigidBodyComponents, TransformComponents& transformComponents, JointComponents& jointComponents, HingeJointComponents& hingeJointComponents) :mWorld(world), mRigidBodyComponents(rigidBodyComponents), mTransformComponents(transformComponents), mJointComponents(jointComponents), mHingeJointComponents(hingeJointComponents), mTimeStep(0), mIsWarmStartingActive(true) { } // Initialize before solving the constraint void SolveHingeJointSystem::initBeforeSolve() { // For each joint for (uint32 i=0; i < mHingeJointComponents.getNbEnabledComponents(); i++) { const Entity jointEntity = mHingeJointComponents.mJointEntities[i]; // Get the bodies entities const Entity body1Entity = mJointComponents.getBody1Entity(jointEntity); const Entity body2Entity = mJointComponents.getBody2Entity(jointEntity); assert(!mRigidBodyComponents.getIsEntityDisabled(body1Entity)); assert(!mRigidBodyComponents.getIsEntityDisabled(body2Entity)); // Get the inertia tensor of bodies mHingeJointComponents.mI1[i] = mRigidBodyComponents.getInertiaTensorWorldInverse(body1Entity); mHingeJointComponents.mI2[i] = mRigidBodyComponents.getInertiaTensorWorldInverse(body2Entity); } // For each joint for (uint32 i=0; i < mHingeJointComponents.getNbEnabledComponents(); i++) { const Entity jointEntity = mHingeJointComponents.mJointEntities[i]; // Get the bodies entities const Entity body1Entity = mJointComponents.getBody1Entity(jointEntity); const Entity body2Entity = mJointComponents.getBody2Entity(jointEntity); const Quaternion& orientationBody1 = mTransformComponents.getTransform(body1Entity).getOrientation(); const Quaternion& orientationBody2 = mTransformComponents.getTransform(body2Entity).getOrientation(); // Compute the vector from body center to the anchor point in world-space mHingeJointComponents.mR1World[i] = orientationBody1 * mHingeJointComponents.mLocalAnchorPointBody1[i]; mHingeJointComponents.mR2World[i] = orientationBody2 * mHingeJointComponents.mLocalAnchorPointBody2[i]; } const decimal biasFactor = (BETA / mTimeStep); // For each joint for (uint32 i=0; i < mHingeJointComponents.getNbEnabledComponents(); i++) { const Entity jointEntity = mHingeJointComponents.mJointEntities[i]; // Get the bodies entities const Entity body1Entity = mJointComponents.getBody1Entity(jointEntity); const Entity body2Entity = mJointComponents.getBody2Entity(jointEntity); const Quaternion& orientationBody1 = mTransformComponents.getTransform(body1Entity).getOrientation(); const Quaternion& orientationBody2 = mTransformComponents.getTransform(body2Entity).getOrientation(); // Compute vectors needed in the Jacobian Vector3& a1 = mHingeJointComponents.mA1[i]; a1 = orientationBody1 * mHingeJointComponents.mHingeLocalAxisBody1[i]; Vector3 a2 = orientationBody2 * mHingeJointComponents.mHingeLocalAxisBody2[i]; a1.normalize(); a2.normalize(); const Vector3 b2 = a2.getOneUnitOrthogonalVector(); const Vector3 c2 = a2.cross(b2); mHingeJointComponents.mB2CrossA1[i] = b2.cross(a1); mHingeJointComponents.mC2CrossA1[i] = c2.cross(a1); // Compute the bias "b" of the rotation constraints mHingeJointComponents.mBiasRotation[i].setToZero(); if (mJointComponents.getPositionCorrectionTechnique(jointEntity) == JointsPositionCorrectionTechnique::BAUMGARTE_JOINTS) { mHingeJointComponents.mBiasRotation[i] = biasFactor * Vector2(a1.dot(b2), a1.dot(c2)); } } // For each joint for (uint32 i=0; i < mHingeJointComponents.getNbEnabledComponents(); i++) { const Entity jointEntity = mHingeJointComponents.mJointEntities[i]; // Get the bodies entities const Entity body1Entity = mJointComponents.getBody1Entity(jointEntity); const Entity body2Entity = mJointComponents.getBody2Entity(jointEntity); // Compute the corresponding skew-symmetric matrices Matrix3x3 skewSymmetricMatrixU1= Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(mHingeJointComponents.mR1World[i]); Matrix3x3 skewSymmetricMatrixU2= Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(mHingeJointComponents.mR2World[i]); const uint32 componentIndexBody1 = mRigidBodyComponents.getEntityIndex(body1Entity); const uint32 componentIndexBody2 = mRigidBodyComponents.getEntityIndex(body2Entity); // Compute the inverse mass matrix K=JM^-1J^t for the 3 translation constraints (3x3 matrix) decimal body1MassInverse = mRigidBodyComponents.mInverseMasses[componentIndexBody1]; decimal body2MassInverse = mRigidBodyComponents.mInverseMasses[componentIndexBody2]; decimal inverseMassBodies = body1MassInverse + body2MassInverse; Matrix3x3 massMatrix = Matrix3x3(inverseMassBodies, 0, 0, 0, inverseMassBodies, 0, 0, 0, inverseMassBodies) + skewSymmetricMatrixU1 * mHingeJointComponents.mI1[i] * skewSymmetricMatrixU1.getTranspose() + skewSymmetricMatrixU2 * mHingeJointComponents.mI2[i] * skewSymmetricMatrixU2.getTranspose(); Matrix3x3& inverseMassMatrixTranslation = mHingeJointComponents.mInverseMassMatrixTranslation[i]; inverseMassMatrixTranslation.setToZero(); if (mRigidBodyComponents.mBodyTypes[componentIndexBody1] == BodyType::DYNAMIC || mRigidBodyComponents.mBodyTypes[componentIndexBody2] == BodyType::DYNAMIC) { mHingeJointComponents.mInverseMassMatrixTranslation[i] = massMatrix.getInverse(); } } // For each joint for (uint32 i=0; i < mHingeJointComponents.getNbEnabledComponents(); i++) { const Entity jointEntity = mHingeJointComponents.mJointEntities[i]; // Get the bodies entities const Entity body1Entity = mJointComponents.getBody1Entity(jointEntity); const Entity body2Entity = mJointComponents.getBody2Entity(jointEntity); // Get the bodies positions and orientations const Vector3& x1 = mRigidBodyComponents.getCenterOfMassWorld(body1Entity); const Vector3& x2 = mRigidBodyComponents.getCenterOfMassWorld(body2Entity); // Compute the bias "b" of the translation constraints mHingeJointComponents.mBiasTranslation[i].setToZero(); if (mJointComponents.getPositionCorrectionTechnique(jointEntity) == JointsPositionCorrectionTechnique::BAUMGARTE_JOINTS) { mHingeJointComponents.mBiasTranslation[i] = biasFactor * (x2 + mHingeJointComponents.mR2World[i] - x1 - mHingeJointComponents.mR1World[i]); } } // For each joint for (uint32 i=0; i < mHingeJointComponents.getNbEnabledComponents(); i++) { const Entity jointEntity = mHingeJointComponents.mJointEntities[i]; // Get the bodies entities const Entity body1Entity = mJointComponents.getBody1Entity(jointEntity); const Entity body2Entity = mJointComponents.getBody2Entity(jointEntity); const Matrix3x3& i1 = mHingeJointComponents.mI1[i]; const Matrix3x3& i2 = mHingeJointComponents.mI2[i]; const Vector3& b2CrossA1 = mHingeJointComponents.mB2CrossA1[i]; const Vector3& c2CrossA1 = mHingeJointComponents.mC2CrossA1[i]; // Compute the inverse mass matrix K=JM^-1J^t for the 2 rotation constraints (2x2 matrix) Vector3 i1B2CrossA1 = i1 * b2CrossA1; Vector3 i1C2CrossA1 = i1 * c2CrossA1; Vector3 i2B2CrossA1 = i2 * b2CrossA1; Vector3 i2C2CrossA1 = i2 * c2CrossA1; const decimal el11 = b2CrossA1.dot(i1B2CrossA1) + b2CrossA1.dot(i2B2CrossA1); const decimal el12 = b2CrossA1.dot(i1C2CrossA1) + b2CrossA1.dot(i2C2CrossA1); const decimal el21 = c2CrossA1.dot(i1B2CrossA1) + c2CrossA1.dot(i2B2CrossA1); const decimal el22 = c2CrossA1.dot(i1C2CrossA1) + c2CrossA1.dot(i2C2CrossA1); const Matrix2x2 matrixKRotation(el11, el12, el21, el22); mHingeJointComponents.mInverseMassMatrixRotation[i].setToZero(); if (mRigidBodyComponents.getBodyType(body1Entity) == BodyType::DYNAMIC || mRigidBodyComponents.getBodyType(body2Entity) == BodyType::DYNAMIC) { mHingeJointComponents.mInverseMassMatrixRotation[i] = matrixKRotation.getInverse(); } } // If warm-starting is not enabled if (!mIsWarmStartingActive) { // For each joint for (uint32 i=0; i < mHingeJointComponents.getNbEnabledComponents(); i++) { // Reset all the accumulated impulses mHingeJointComponents.mImpulseTranslation[i].setToZero(); mHingeJointComponents.mImpulseRotation[i].setToZero(); mHingeJointComponents.mImpulseLowerLimit[i] = decimal(0.0); mHingeJointComponents.mImpulseUpperLimit[i] = decimal(0.0); mHingeJointComponents.mImpulseMotor[i] = decimal(0.0); } } // For each joint for (uint32 i=0; i < mHingeJointComponents.getNbEnabledComponents(); i++) { const Entity jointEntity = mHingeJointComponents.mJointEntities[i]; // Get the bodies entities const Entity body1Entity = mJointComponents.getBody1Entity(jointEntity); const Entity body2Entity = mJointComponents.getBody2Entity(jointEntity); const Quaternion& orientationBody1 = mTransformComponents.getTransform(body1Entity).getOrientation(); const Quaternion& orientationBody2 = mTransformComponents.getTransform(body2Entity).getOrientation(); // Compute the current angle around the hinge axis decimal hingeAngle = computeCurrentHingeAngle(jointEntity, orientationBody1, orientationBody2); // Check if the limit constraints are violated or not decimal lowerLimitError = hingeAngle - mHingeJointComponents.mLowerLimit[i]; decimal upperLimitError = mHingeJointComponents.mUpperLimit[i] - hingeAngle; bool oldIsLowerLimitViolated = mHingeJointComponents.mIsLowerLimitViolated[i]; bool isLowerLimitViolated = lowerLimitError <= 0; mHingeJointComponents.mIsLowerLimitViolated[i] = isLowerLimitViolated; if (!isLowerLimitViolated || isLowerLimitViolated != oldIsLowerLimitViolated) { mHingeJointComponents.mImpulseLowerLimit[i] = decimal(0.0); } bool oldIsUpperLimitViolated = mHingeJointComponents.mIsUpperLimitViolated[i]; bool isUpperLimitViolated = upperLimitError <= 0; mHingeJointComponents.mIsUpperLimitViolated[i] = isUpperLimitViolated; if (!isUpperLimitViolated || isUpperLimitViolated != oldIsUpperLimitViolated) { mHingeJointComponents.mImpulseUpperLimit[i] = decimal(0.0); } // If the motor or limits are enabled if (mHingeJointComponents.mIsMotorEnabled[i] || (mHingeJointComponents.mIsLimitEnabled[i] && (mHingeJointComponents.mIsLowerLimitViolated[i] || mHingeJointComponents.mIsUpperLimitViolated[i]))) { Vector3& a1 = mHingeJointComponents.mA1[i]; // Compute the inverse of the mass matrix K=JM^-1J^t for the limits and motor (1x1 matrix) decimal inverseMassMatrixLimitMotor = a1.dot(mHingeJointComponents.mI1[i] * a1) + a1.dot(mHingeJointComponents.mI2[i] * a1); inverseMassMatrixLimitMotor = (inverseMassMatrixLimitMotor > decimal(0.0)) ? decimal(1.0) / inverseMassMatrixLimitMotor : decimal(0.0); mHingeJointComponents.mInverseMassMatrixLimitMotor[i] = inverseMassMatrixLimitMotor; if (mHingeJointComponents.mIsLimitEnabled[i]) { // Compute the bias "b" of the lower limit constraint mHingeJointComponents.mBLowerLimit[i] = decimal(0.0); if (mJointComponents.getPositionCorrectionTechnique(jointEntity) == JointsPositionCorrectionTechnique::BAUMGARTE_JOINTS) { mHingeJointComponents.mBLowerLimit[i] = biasFactor * lowerLimitError; } // Compute the bias "b" of the upper limit constraint mHingeJointComponents.mBUpperLimit[i] = decimal(0.0); if (mJointComponents.getPositionCorrectionTechnique(jointEntity) == JointsPositionCorrectionTechnique::BAUMGARTE_JOINTS) { mHingeJointComponents.mBUpperLimit[i] = biasFactor * upperLimitError; } } } } } // Warm start the constraint (apply the previous impulse at the beginning of the step) void SolveHingeJointSystem::warmstart() { // For each joint component for (uint32 i=0; i < mHingeJointComponents.getNbEnabledComponents(); i++) { const Entity jointEntity = mHingeJointComponents.mJointEntities[i]; // Get the bodies entities const Entity body1Entity = mJointComponents.getBody1Entity(jointEntity); const Entity body2Entity = mJointComponents.getBody2Entity(jointEntity); const uint32 componentIndexBody1 = mRigidBodyComponents.getEntityIndex(body1Entity); const uint32 componentIndexBody2 = mRigidBodyComponents.getEntityIndex(body2Entity); // Get the velocities Vector3& v1 = mRigidBodyComponents.mConstrainedLinearVelocities[componentIndexBody1]; Vector3& v2 = mRigidBodyComponents.mConstrainedLinearVelocities[componentIndexBody2]; Vector3& w1 = mRigidBodyComponents.mConstrainedAngularVelocities[componentIndexBody1]; Vector3& w2 = mRigidBodyComponents.mConstrainedAngularVelocities[componentIndexBody2]; // Get the inverse mass and inverse inertia tensors of the bodies const decimal inverseMassBody1 = mRigidBodyComponents.mInverseMasses[componentIndexBody1]; const decimal inverseMassBody2 = mRigidBodyComponents.mInverseMasses[componentIndexBody2]; const Vector3& impulseTranslation = mHingeJointComponents.mImpulseTranslation[i]; const Vector2& impulseRotation = mHingeJointComponents.mImpulseRotation[i]; const decimal impulseLowerLimit = mHingeJointComponents.mImpulseLowerLimit[i]; const decimal impulseUpperLimit = mHingeJointComponents.mImpulseUpperLimit[i]; const Vector3& b2CrossA1 = mHingeJointComponents.mB2CrossA1[i]; const Vector3& a1 = mHingeJointComponents.mA1[i]; // Compute the impulse P=J^T * lambda for the 2 rotation constraints Vector3 rotationImpulse = -b2CrossA1 * impulseRotation.x - mHingeJointComponents.mC2CrossA1[i] * impulseRotation.y; // Compute the impulse P=J^T * lambda for the lower and upper limits constraints const Vector3 limitsImpulse = (impulseUpperLimit - impulseLowerLimit) * a1; // Compute the impulse P=J^T * lambda for the motor constraint const Vector3 motorImpulse = -mHingeJointComponents.mImpulseMotor[i] * a1; // Compute the impulse P=J^T * lambda for the 3 translation constraints of body 1 Vector3 linearImpulseBody1 = -impulseTranslation; Vector3 angularImpulseBody1 = impulseTranslation.cross(mHingeJointComponents.mR1World[i]); // Compute the impulse P=J^T * lambda for the 2 rotation constraints of body 1 angularImpulseBody1 += rotationImpulse; // Compute the impulse P=J^T * lambda for the lower and upper limits constraints of body 1 angularImpulseBody1 += limitsImpulse; // Compute the impulse P=J^T * lambda for the motor constraint of body 1 angularImpulseBody1 += motorImpulse; // Apply the impulse to the body 1 v1 += inverseMassBody1 * linearImpulseBody1; w1 += mHingeJointComponents.mI1[i] * angularImpulseBody1; // Compute the impulse P=J^T * lambda for the 3 translation constraints of body 2 Vector3 angularImpulseBody2 = -impulseTranslation.cross(mHingeJointComponents.mR2World[i]); // Compute the impulse P=J^T * lambda for the 2 rotation constraints of body 2 angularImpulseBody2 += -rotationImpulse; // Compute the impulse P=J^T * lambda for the lower and upper limits constraints of body 2 angularImpulseBody2 += -limitsImpulse; // Compute the impulse P=J^T * lambda for the motor constraint of body 2 angularImpulseBody2 += -motorImpulse; // Apply the impulse to the body 2 v2 += inverseMassBody2 * impulseTranslation; w2 += mHingeJointComponents.mI2[i] * angularImpulseBody2; } } // Solve the velocity constraint void SolveHingeJointSystem::solveVelocityConstraint() { // For each joint component for (uint32 i=0; i < mHingeJointComponents.getNbEnabledComponents(); i++) { const Entity jointEntity = mHingeJointComponents.mJointEntities[i]; // Get the bodies entities const Entity body1Entity = mJointComponents.getBody1Entity(jointEntity); const Entity body2Entity = mJointComponents.getBody2Entity(jointEntity); const uint32 componentIndexBody1 = mRigidBodyComponents.getEntityIndex(body1Entity); const uint32 componentIndexBody2 = mRigidBodyComponents.getEntityIndex(body2Entity); // Get the velocities Vector3& v1 = mRigidBodyComponents.mConstrainedLinearVelocities[componentIndexBody1]; Vector3& v2 = mRigidBodyComponents.mConstrainedLinearVelocities[componentIndexBody2]; Vector3& w1 = mRigidBodyComponents.mConstrainedAngularVelocities[componentIndexBody1]; Vector3& w2 = mRigidBodyComponents.mConstrainedAngularVelocities[componentIndexBody2]; // Get the inverse mass and inverse inertia tensors of the bodies decimal inverseMassBody1 = mRigidBodyComponents.mInverseMasses[componentIndexBody1]; decimal inverseMassBody2 = mRigidBodyComponents.mInverseMasses[componentIndexBody2]; const Matrix3x3& i1 = mHingeJointComponents.mI1[i]; const Matrix3x3& i2 = mHingeJointComponents.mI2[i]; const Vector3& r1World = mHingeJointComponents.mR1World[i]; const Vector3& r2World = mHingeJointComponents.mR2World[i]; const Vector3& a1 = mHingeJointComponents.mA1[i]; const decimal inverseMassMatrixLimitMotor = mHingeJointComponents.mInverseMassMatrixLimitMotor[i]; // --------------- Translation Constraints --------------- // // Compute J*v const Vector3 JvTranslation = v2 + w2.cross(r2World) - v1 - w1.cross(r1World); // Compute the Lagrange multiplier lambda const Vector3 deltaLambdaTranslation = mHingeJointComponents.mInverseMassMatrixTranslation[i] * (-JvTranslation - mHingeJointComponents.mBiasTranslation[i]); mHingeJointComponents.mImpulseTranslation[i] += deltaLambdaTranslation; // Compute the impulse P=J^T * lambda of body 1 const Vector3 linearImpulseBody1 = -deltaLambdaTranslation; Vector3 angularImpulseBody1 = deltaLambdaTranslation.cross(r1World); // Apply the impulse to the body 1 v1 += inverseMassBody1 * linearImpulseBody1; w1 += i1 * angularImpulseBody1; // Compute the impulse P=J^T * lambda of body 2 Vector3 angularImpulseBody2 = -deltaLambdaTranslation.cross(r2World); // Apply the impulse to the body 2 v2 += inverseMassBody2 * deltaLambdaTranslation; w2 += i2 * angularImpulseBody2; // --------------- Rotation Constraints --------------- // const Vector3& b2CrossA1 = mHingeJointComponents.mB2CrossA1[i]; const Vector3& c2CrossA1 = mHingeJointComponents.mC2CrossA1[i]; // Compute J*v for the 2 rotation constraints const Vector2 JvRotation(-b2CrossA1.dot(w1) + b2CrossA1.dot(w2), -c2CrossA1.dot(w1) + c2CrossA1.dot(w2)); // Compute the Lagrange multiplier lambda for the 2 rotation constraints Vector2 deltaLambdaRotation = mHingeJointComponents.mInverseMassMatrixRotation[i] * (-JvRotation - mHingeJointComponents.mBiasRotation[i]); mHingeJointComponents.mImpulseRotation[i] += deltaLambdaRotation; // Compute the impulse P=J^T * lambda for the 2 rotation constraints of body 1 angularImpulseBody1 = -b2CrossA1 * deltaLambdaRotation.x - c2CrossA1 * deltaLambdaRotation.y; // Apply the impulse to the body 1 w1 += i1 * angularImpulseBody1; // Compute the impulse P=J^T * lambda for the 2 rotation constraints of body 2 angularImpulseBody2 = b2CrossA1 * deltaLambdaRotation.x + c2CrossA1 * deltaLambdaRotation.y; // Apply the impulse to the body 2 w2 += i2 * angularImpulseBody2; // --------------- Limits Constraints --------------- // if (mHingeJointComponents.mIsLimitEnabled[i]) { // If the lower limit is violated if (mHingeJointComponents.mIsLowerLimitViolated[i]) { // Compute J*v for the lower limit constraint const decimal JvLowerLimit = (w2 - w1).dot(a1); // Compute the Lagrange multiplier lambda for the lower limit constraint decimal deltaLambdaLower = inverseMassMatrixLimitMotor * (-JvLowerLimit -mHingeJointComponents.mBLowerLimit[i]); decimal lambdaTemp = mHingeJointComponents.mImpulseLowerLimit[i]; mHingeJointComponents.mImpulseLowerLimit[i] = std::max(mHingeJointComponents.mImpulseLowerLimit[i] + deltaLambdaLower, decimal(0.0)); deltaLambdaLower = mHingeJointComponents.mImpulseLowerLimit[i] - lambdaTemp; // Compute the impulse P=J^T * lambda for the lower limit constraint of body 1 const Vector3 angularImpulseBody1 = -deltaLambdaLower * a1; // Apply the impulse to the body 1 w1 += i1 * angularImpulseBody1; // Compute the impulse P=J^T * lambda for the lower limit constraint of body 2 const Vector3 angularImpulseBody2 = deltaLambdaLower * a1; // Apply the impulse to the body 2 w2 += i2 * angularImpulseBody2; } // If the upper limit is violated if (mHingeJointComponents.mIsUpperLimitViolated[i]) { // Compute J*v for the upper limit constraint const decimal JvUpperLimit = -(w2 - w1).dot(a1); // Compute the Lagrange multiplier lambda for the upper limit constraint decimal deltaLambdaUpper = inverseMassMatrixLimitMotor * (-JvUpperLimit -mHingeJointComponents.mBUpperLimit[i]); decimal lambdaTemp = mHingeJointComponents.mImpulseUpperLimit[i]; mHingeJointComponents.mImpulseUpperLimit[i] = std::max(mHingeJointComponents.mImpulseUpperLimit[i] + deltaLambdaUpper, decimal(0.0)); deltaLambdaUpper = mHingeJointComponents.mImpulseUpperLimit[i] - lambdaTemp; // Compute the impulse P=J^T * lambda for the upper limit constraint of body 1 const Vector3 angularImpulseBody1 = deltaLambdaUpper * a1; // Apply the impulse to the body 1 w1 += i1 * angularImpulseBody1; // Compute the impulse P=J^T * lambda for the upper limit constraint of body 2 const Vector3 angularImpulseBody2 = -deltaLambdaUpper * a1; // Apply the impulse to the body 2 w2 += i2 * angularImpulseBody2; } } // --------------- Motor --------------- // // If the motor is enabled if (mHingeJointComponents.mIsMotorEnabled[i]) { // Compute J*v for the motor const decimal JvMotor = a1.dot(w1 - w2); // Compute the Lagrange multiplier lambda for the motor const decimal maxMotorImpulse = mHingeJointComponents.mMaxMotorTorque[i] * mTimeStep; decimal deltaLambdaMotor = mHingeJointComponents.mInverseMassMatrixLimitMotor[i] * (-JvMotor - mHingeJointComponents.mMotorSpeed[i]); decimal lambdaTemp = mHingeJointComponents.mImpulseMotor[i]; mHingeJointComponents.mImpulseMotor[i] = clamp(mHingeJointComponents.mImpulseMotor[i] + deltaLambdaMotor, -maxMotorImpulse, maxMotorImpulse); deltaLambdaMotor = mHingeJointComponents.mImpulseMotor[i] - lambdaTemp; // Compute the impulse P=J^T * lambda for the motor of body 1 const Vector3 angularImpulseBody1 = -deltaLambdaMotor * a1; // Apply the impulse to the body 1 w1 += i1 * angularImpulseBody1; // Compute the impulse P=J^T * lambda for the motor of body 2 const Vector3 angularImpulseBody2 = deltaLambdaMotor * a1; // Apply the impulse to the body 2 w2 += i2 * angularImpulseBody2; } } } // Solve the position constraint (for position error correction) void SolveHingeJointSystem::solvePositionConstraint() { // For each joint component for (uint32 i=0; i < mHingeJointComponents.getNbEnabledComponents(); i++) { const Entity jointEntity = mHingeJointComponents.mJointEntities[i]; // If the error position correction technique is not the non-linear-gauss-seidel, we do not execute this method if (mJointComponents.getPositionCorrectionTechnique(jointEntity) != JointsPositionCorrectionTechnique::NON_LINEAR_GAUSS_SEIDEL) continue; // Get the bodies entities Entity body1Entity = mJointComponents.getBody1Entity(jointEntity); Entity body2Entity = mJointComponents.getBody2Entity(jointEntity); // Recompute the world inverse inertia tensors const Matrix3x3 orientation1 = mTransformComponents.getTransform(body1Entity).getOrientation().getMatrix(); RigidBody::computeWorldInertiaTensorInverse(orientation1, mRigidBodyComponents.getInertiaTensorLocalInverse(body1Entity), mHingeJointComponents.mI1[i]); const Matrix3x3 orientation2 = mTransformComponents.getTransform(body2Entity).getOrientation().getMatrix(); RigidBody::computeWorldInertiaTensorInverse(orientation2, mRigidBodyComponents.getInertiaTensorLocalInverse(body2Entity), mHingeJointComponents.mI2[i]); } // For each joint component for (uint32 i=0; i < mHingeJointComponents.getNbEnabledComponents(); i++) { const Entity jointEntity = mHingeJointComponents.mJointEntities[i]; // If the error position correction technique is not the non-linear-gauss-seidel, we do not execute this method if (mJointComponents.getPositionCorrectionTechnique(jointEntity) != JointsPositionCorrectionTechnique::NON_LINEAR_GAUSS_SEIDEL) continue; // Get the bodies entities const Entity body1Entity = mJointComponents.getBody1Entity(jointEntity); const Entity body2Entity = mJointComponents.getBody2Entity(jointEntity); const Quaternion& q1 = mRigidBodyComponents.getConstrainedOrientation(body1Entity); const Quaternion& q2 = mRigidBodyComponents.getConstrainedOrientation(body2Entity); // Compute the vector from body center to the anchor point in world-space mHingeJointComponents.mR1World[i] = q1 * mHingeJointComponents.mLocalAnchorPointBody1[i]; mHingeJointComponents.mR2World[i] = q2 * mHingeJointComponents.mLocalAnchorPointBody2[i]; } // For each joint component for (uint32 i=0; i < mHingeJointComponents.getNbEnabledComponents(); i++) { const Entity jointEntity = mHingeJointComponents.mJointEntities[i]; // If the error position correction technique is not the non-linear-gauss-seidel, we do not execute this method if (mJointComponents.getPositionCorrectionTechnique(jointEntity) != JointsPositionCorrectionTechnique::NON_LINEAR_GAUSS_SEIDEL) continue; // Get the bodies entities const Entity body1Entity = mJointComponents.getBody1Entity(jointEntity); const Entity body2Entity = mJointComponents.getBody2Entity(jointEntity); // Compute the corresponding skew-symmetric matrices Matrix3x3 skewSymmetricMatrixU1 = Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(mHingeJointComponents.mR1World[i]); Matrix3x3 skewSymmetricMatrixU2 = Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(mHingeJointComponents.mR2World[i]); // --------------- Translation Constraints --------------- // const uint32 componentIndexBody1 = mRigidBodyComponents.getEntityIndex(body1Entity); const uint32 componentIndexBody2 = mRigidBodyComponents.getEntityIndex(body2Entity); // Compute the matrix K=JM^-1J^t (3x3 matrix) for the 3 translation constraints const decimal body1InverseMass = mRigidBodyComponents.mInverseMasses[componentIndexBody1]; const decimal body2InverseMass = mRigidBodyComponents.mInverseMasses[componentIndexBody2]; decimal inverseMassBodies = body1InverseMass + body2InverseMass; Matrix3x3 massMatrix = Matrix3x3(inverseMassBodies, 0, 0, 0, inverseMassBodies, 0, 0, 0, inverseMassBodies) + skewSymmetricMatrixU1 * mHingeJointComponents.mI1[i] * skewSymmetricMatrixU1.getTranspose() + skewSymmetricMatrixU2 * mHingeJointComponents.mI2[i] * skewSymmetricMatrixU2.getTranspose(); mHingeJointComponents.mInverseMassMatrixTranslation[i].setToZero(); if (mRigidBodyComponents.mBodyTypes[componentIndexBody1] == BodyType::DYNAMIC || mRigidBodyComponents.mBodyTypes[componentIndexBody2] == BodyType::DYNAMIC) { mHingeJointComponents.mInverseMassMatrixTranslation[i] = massMatrix.getInverse(); } } // For each joint component for (uint32 i=0; i < mHingeJointComponents.getNbEnabledComponents(); i++) { const Entity jointEntity = mHingeJointComponents.mJointEntities[i]; // If the error position correction technique is not the non-linear-gauss-seidel, we do not execute this method if (mJointComponents.getPositionCorrectionTechnique(jointEntity) != JointsPositionCorrectionTechnique::NON_LINEAR_GAUSS_SEIDEL) continue; // Get the bodies entities const Entity body1Entity = mJointComponents.getBody1Entity(jointEntity); const Entity body2Entity = mJointComponents.getBody2Entity(jointEntity); const uint32 componentIndexBody1 = mRigidBodyComponents.getEntityIndex(body1Entity); const uint32 componentIndexBody2 = mRigidBodyComponents.getEntityIndex(body2Entity); Quaternion& q1 = mRigidBodyComponents.mConstrainedOrientations[componentIndexBody1]; Quaternion& q2 = mRigidBodyComponents.mConstrainedOrientations[componentIndexBody2]; Vector3& b2CrossA1 = mHingeJointComponents.mB2CrossA1[i]; Vector3& c2CrossA1 = mHingeJointComponents.mC2CrossA1[i]; Vector3& a1 = mHingeJointComponents.mA1[i]; // Compute vectors needed in the Jacobian a1 = q1 * mHingeJointComponents.mHingeLocalAxisBody1[i]; Vector3 a2 = q2 * mHingeJointComponents.mHingeLocalAxisBody2[i]; a1.normalize(); mHingeJointComponents.mA1[i] = a1; a2.normalize(); const Vector3 b2 = a2.getOneUnitOrthogonalVector(); const Vector3 c2 = a2.cross(b2); b2CrossA1 = b2.cross(a1); mHingeJointComponents.mB2CrossA1[i] = b2CrossA1; c2CrossA1 = c2.cross(a1); mHingeJointComponents.mC2CrossA1[i] = c2CrossA1; Vector3& x1 = mRigidBodyComponents.mConstrainedPositions[componentIndexBody1]; Vector3& x2 = mRigidBodyComponents.mConstrainedPositions[componentIndexBody2]; // Compute position error for the 3 translation constraints const Vector3 errorTranslation = x2 + mHingeJointComponents.mR2World[i] - x1 - mHingeJointComponents.mR1World[i]; // Compute the Lagrange multiplier lambda const Vector3 lambdaTranslation = mHingeJointComponents.mInverseMassMatrixTranslation[i] * (-errorTranslation); // Compute the impulse of body 1 Vector3 linearImpulseBody1 = -lambdaTranslation; Vector3 angularImpulseBody1 = lambdaTranslation.cross(mHingeJointComponents.mR1World[i]); // Get the inverse mass and inverse inertia tensors of the bodies decimal inverseMassBody1 = mRigidBodyComponents.mInverseMasses[componentIndexBody1]; decimal inverseMassBody2 = mRigidBodyComponents.mInverseMasses[componentIndexBody2]; // Compute the pseudo velocity of body 1 const Vector3 v1 = inverseMassBody1 * linearImpulseBody1; Vector3 w1 = mHingeJointComponents.mI1[i] * angularImpulseBody1; // Update the body position/orientation of body 1 x1 += v1; q1 += Quaternion(0, w1) * q1 * decimal(0.5); q1.normalize(); // Compute the impulse of body 2 Vector3 angularImpulseBody2 = -lambdaTranslation.cross(mHingeJointComponents.mR2World[i]); // Compute the pseudo velocity of body 2 const Vector3 v2 = inverseMassBody2 * lambdaTranslation; Vector3 w2 = mHingeJointComponents.mI2[i] * angularImpulseBody2; // Update the body position/orientation of body 2 x2 += v2; q2 += Quaternion(0, w2) * q2 * decimal(0.5); q2.normalize(); // --------------- Rotation Constraints --------------- // // Compute the inverse mass matrix K=JM^-1J^t for the 2 rotation constraints (2x2 matrix) Vector3 I1B2CrossA1 = mHingeJointComponents.mI1[i] * b2CrossA1; Vector3 I1C2CrossA1 = mHingeJointComponents.mI1[i] * c2CrossA1; Vector3 I2B2CrossA1 = mHingeJointComponents.mI2[i] * b2CrossA1; Vector3 I2C2CrossA1 = mHingeJointComponents.mI2[i] * c2CrossA1; const decimal el11 = b2CrossA1.dot(I1B2CrossA1) + b2CrossA1.dot(I2B2CrossA1); const decimal el12 = b2CrossA1.dot(I1C2CrossA1) + b2CrossA1.dot(I2C2CrossA1); const decimal el21 = c2CrossA1.dot(I1B2CrossA1) + c2CrossA1.dot(I2B2CrossA1); const decimal el22 = c2CrossA1.dot(I1C2CrossA1) + c2CrossA1.dot(I2C2CrossA1); const Matrix2x2 matrixKRotation(el11, el12, el21, el22); mHingeJointComponents.mInverseMassMatrixRotation[i].setToZero(); if (mRigidBodyComponents.mBodyTypes[componentIndexBody1] == BodyType::DYNAMIC || mRigidBodyComponents.mBodyTypes[componentIndexBody2] == BodyType::DYNAMIC) { mHingeJointComponents.mInverseMassMatrixRotation[i] = matrixKRotation.getInverse(); } // Compute the position error for the 3 rotation constraints const Vector2 errorRotation = Vector2(a1.dot(b2), a1.dot(c2)); // Compute the Lagrange multiplier lambda for the 3 rotation constraints Vector2 lambdaRotation = mHingeJointComponents.mInverseMassMatrixRotation[i] * (-errorRotation); // Compute the impulse P=J^T * lambda for the 3 rotation constraints of body 1 angularImpulseBody1 = -b2CrossA1 * lambdaRotation.x - c2CrossA1 * lambdaRotation.y; // Compute the pseudo velocity of body 1 w1 = mHingeJointComponents.mI1[i] * angularImpulseBody1; // Update the body position/orientation of body 1 q1 += Quaternion(0, w1) * q1 * decimal(0.5); q1.normalize(); // Compute the impulse of body 2 angularImpulseBody2 = b2CrossA1 * lambdaRotation.x + c2CrossA1 * lambdaRotation.y; // Compute the pseudo velocity of body 2 w2 = mHingeJointComponents.mI2[i] * angularImpulseBody2; // Update the body position/orientation of body 2 q2 += Quaternion(0, w2) * q2 * decimal(0.5); q2.normalize(); } // For each joint component for (uint32 i=0; i < mHingeJointComponents.getNbEnabledComponents(); i++) { const Entity jointEntity = mHingeJointComponents.mJointEntities[i]; // If the error position correction technique is not the non-linear-gauss-seidel, we do not execute this method if (mJointComponents.getPositionCorrectionTechnique(jointEntity) != JointsPositionCorrectionTechnique::NON_LINEAR_GAUSS_SEIDEL) continue; // Get the bodies entities const Entity body1Entity = mJointComponents.getBody1Entity(jointEntity); const Entity body2Entity = mJointComponents.getBody2Entity(jointEntity); Quaternion& q1 = mRigidBodyComponents.getConstrainedOrientation(body1Entity); Quaternion& q2 = mRigidBodyComponents.getConstrainedOrientation(body2Entity); // Compute the current angle around the hinge axis const decimal hingeAngle = computeCurrentHingeAngle(jointEntity, q1, q2); // Check if the limit constraints are violated or not decimal lowerLimitError = hingeAngle - mHingeJointComponents.mLowerLimit[i]; decimal upperLimitError = mHingeJointComponents.mUpperLimit[i] - hingeAngle; mHingeJointComponents.mIsLowerLimitViolated[i] = lowerLimitError <= 0; mHingeJointComponents.mIsUpperLimitViolated[i] = upperLimitError <= 0; // --------------- Limits Constraints --------------- // if (mHingeJointComponents.mIsLimitEnabled[i]) { decimal inverseMassMatrixLimitMotor = mHingeJointComponents.mInverseMassMatrixLimitMotor[i]; Vector3& a1 = mHingeJointComponents.mA1[i]; if (mHingeJointComponents.mIsLowerLimitViolated[i] || mHingeJointComponents.mIsUpperLimitViolated[i]) { // Compute the inverse of the mass matrix K=JM^-1J^t for the limits (1x1 matrix) mHingeJointComponents.mInverseMassMatrixLimitMotor[i] = a1.dot(mHingeJointComponents.mI1[i] * a1) + a1.dot(mHingeJointComponents.mI2[i] * a1); mHingeJointComponents.mInverseMassMatrixLimitMotor[i] = (inverseMassMatrixLimitMotor > decimal(0.0)) ? decimal(1.0) / mHingeJointComponents.mInverseMassMatrixLimitMotor[i] : decimal(0.0); } // If the lower limit is violated if (mHingeJointComponents.mIsLowerLimitViolated[i]) { // Compute the Lagrange multiplier lambda for the lower limit constraint decimal lambdaLowerLimit = inverseMassMatrixLimitMotor * (-lowerLimitError ); // Compute the impulse P=J^T * lambda of body 1 const Vector3 angularImpulseBody1 = -lambdaLowerLimit * a1; // Compute the pseudo velocity of body 1 const Vector3 w1 = mHingeJointComponents.mI1[i] * angularImpulseBody1; // Update the body position/orientation of body 1 q1 += Quaternion(0, w1) * q1 * decimal(0.5); q1.normalize(); // Compute the impulse P=J^T * lambda of body 2 const Vector3 angularImpulseBody2 = lambdaLowerLimit * a1; // Compute the pseudo velocity of body 2 const Vector3 w2 = mHingeJointComponents.mI2[i] * angularImpulseBody2; // Update the body position/orientation of body 2 q2 += Quaternion(0, w2) * q2 * decimal(0.5); q2.normalize(); } // If the upper limit is violated if (mHingeJointComponents.mIsUpperLimitViolated[i]) { // Compute the Lagrange multiplier lambda for the upper limit constraint decimal lambdaUpperLimit = inverseMassMatrixLimitMotor * (-upperLimitError); // Compute the impulse P=J^T * lambda of body 1 const Vector3 angularImpulseBody1 = lambdaUpperLimit * a1; // Compute the pseudo velocity of body 1 const Vector3 w1 = mHingeJointComponents.mI1[i] * angularImpulseBody1; // Update the body position/orientation of body 1 q1 += Quaternion(0, w1) * q1 * decimal(0.5); q1.normalize(); // Compute the impulse P=J^T * lambda of body 2 const Vector3 angularImpulseBody2 = -lambdaUpperLimit * a1; // Compute the pseudo velocity of body 2 const Vector3 w2 = mHingeJointComponents.mI2[i] * angularImpulseBody2; // Update the body position/orientation of body 2 q2 += Quaternion(0, w2) * q2 * decimal(0.5); q2.normalize(); } } } } // Given an angle in radian, this method returns the corresponding angle in the range [-pi; pi] decimal SolveHingeJointSystem::computeNormalizedAngle(decimal angle) const { // Convert it into the range [-2*pi; 2*pi] angle = std::fmod(angle, PI_TIMES_2); // Convert it into the range [-pi; pi] if (angle < -PI_RP3D) { return angle + PI_TIMES_2; } else if (angle > PI_RP3D) { return angle - PI_TIMES_2; } else { return angle; } } // Given an "inputAngle" in the range [-pi, pi], this method returns an // angle (modulo 2*pi) in the range [-2*pi; 2*pi] that is closest to one of the // two angle limits in arguments. decimal SolveHingeJointSystem::computeCorrespondingAngleNearLimits(decimal inputAngle, decimal lowerLimitAngle, decimal upperLimitAngle) const { if (upperLimitAngle <= lowerLimitAngle) { return inputAngle; } else if (inputAngle > upperLimitAngle) { decimal diffToUpperLimit = std::abs(computeNormalizedAngle(inputAngle - upperLimitAngle)); decimal diffToLowerLimit = std::abs(computeNormalizedAngle(inputAngle - lowerLimitAngle)); return (diffToUpperLimit > diffToLowerLimit) ? (inputAngle - PI_TIMES_2) : inputAngle; } else if (inputAngle < lowerLimitAngle) { decimal diffToUpperLimit = std::abs(computeNormalizedAngle(upperLimitAngle - inputAngle)); decimal diffToLowerLimit = std::abs(computeNormalizedAngle(lowerLimitAngle - inputAngle)); return (diffToUpperLimit > diffToLowerLimit) ? inputAngle : (inputAngle + PI_TIMES_2); } else { return inputAngle; } } // Compute the current angle around the hinge axis decimal SolveHingeJointSystem::computeCurrentHingeAngle(Entity jointEntity, const Quaternion& orientationBody1, const Quaternion& orientationBody2) { decimal hingeAngle; // Compute the current orientation difference between the two bodies Quaternion currentOrientationDiff = orientationBody2 * orientationBody1.getInverse(); currentOrientationDiff.normalize(); // Compute the relative rotation considering the initial orientation difference Quaternion relativeRotation = currentOrientationDiff * mHingeJointComponents.getInitOrientationDifferenceInv(jointEntity); relativeRotation.normalize(); // A quaternion q = [cos(theta/2); sin(theta/2) * rotAxis] where rotAxis is a unit // length vector. We can extract cos(theta/2) with q.w and we can extract |sin(theta/2)| with : // |sin(theta/2)| = q.getVectorV().length() since rotAxis is unit length. Note that any // rotation can be represented by a quaternion q and -q. Therefore, if the relative rotation // axis is not pointing in the same direction as the hinge axis, we use the rotation -q which // has the same |sin(theta/2)| value but the value cos(theta/2) is sign inverted. Some details // about this trick is explained in the source code of OpenTissue (http://www.opentissue.org). decimal cosHalfAngle = relativeRotation.w; decimal sinHalfAngleAbs = relativeRotation.getVectorV().length(); // Compute the dot product of the relative rotation axis and the hinge axis decimal dotProduct = relativeRotation.getVectorV().dot(mHingeJointComponents.getA1(jointEntity)); // If the relative rotation axis and the hinge axis are pointing the same direction if (dotProduct >= decimal(0.0)) { hingeAngle = decimal(2.0) * std::atan2(sinHalfAngleAbs, cosHalfAngle); } else { hingeAngle = decimal(2.0) * std::atan2(sinHalfAngleAbs, -cosHalfAngle); } // Convert the angle from range [-2*pi; 2*pi] into the range [-pi; pi] hingeAngle = computeNormalizedAngle(hingeAngle); // Compute and return the corresponding angle near one the two limits return computeCorrespondingAngleNearLimits(hingeAngle, mHingeJointComponents.getLowerLimit(jointEntity), mHingeJointComponents.getUpperLimit(jointEntity)); }