/******************************************************************************** * ReactPhysics3D physics library, http://www.reactphysics3d.com * * Copyright (c) 2010-2015 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ // Libraries #include "Box.h" // Macros #define MEMBER_OFFSET(s,m) ((char *)NULL + (offsetof(s,m))) // Initialize static variables openglframework::VertexBufferObject Box::mVBOVertices(GL_ARRAY_BUFFER); openglframework::VertexBufferObject Box::mVBOIndices(GL_ELEMENT_ARRAY_BUFFER); openglframework::VertexArrayObject Box::mVAO; bool Box::areVBOsCreated = false; VertexData Box::mCubeVertices[8] = { {openglframework::Vector3(1,1,1),openglframework::Vector3(1,1,1),openglframework::Color(1,0,0,1)}, {openglframework::Vector3(-1,1,1),openglframework::Vector3(-1,1,1),openglframework::Color(1,0,0,1)}, {openglframework::Vector3(-1,-1,1),openglframework::Vector3(-1,-1,1),openglframework::Color(1,0,0,1)}, {openglframework::Vector3(1,-1,1),openglframework::Vector3(1,-1,1),openglframework::Color(1,0,0,1)}, {openglframework::Vector3(1,-1,-1),openglframework::Vector3(1,-1,-1),openglframework::Color(1,0,0,1)}, {openglframework::Vector3(-1,-1,-1),openglframework::Vector3(-1,-1,-1),openglframework::Color(1,0,0,1)}, {openglframework::Vector3(-1,1,-1),openglframework::Vector3(-1,1,-1),openglframework::Color(1,0,0,1)}, {openglframework::Vector3(1,1,-1),openglframework::Vector3(1,1,-1),openglframework::Color(1,0,0,1)} }; GLuint Box::mCubeIndices[36] = { 0, 1, 2, 2, 3, 0, 7, 4, 5, 5, 6, 7, 6, 5, 2, 2, 1, 6, 7, 0, 3, 3, 4, 7, 7, 6, 1, 1, 0, 7, 3, 2, 5, 5, 4, 3}; // Constructor Box::Box(const openglframework::Vector3& size, const openglframework::Vector3 &position, reactphysics3d::CollisionWorld* world, openglframework::Shader& shader) : openglframework::Object3D(), mColor(0.01f, 0.62f, 0.39f, 1.0f) { // Initialize the size of the box mSize[0] = size.x * 0.5f; mSize[1] = size.y * 0.5f; mSize[2] = size.z * 0.5f; // Compute the scaling matrix mScalingMatrix = openglframework::Matrix4(mSize[0], 0, 0, 0, 0, mSize[1], 0, 0, 0, 0, mSize[2], 0, 0, 0, 0, 1); // Initialize the position where the cube will be rendered translateWorld(position); // Create the collision shape for the rigid body (box shape) // ReactPhysics3D will clone this object to create an internal one. Therefore, // it is OK if this object is destroyed right after calling RigidBody::addCollisionShape() const rp3d::BoxShape collisionShape(rp3d::Vector3(mSize[0], mSize[1], mSize[2])); // Initial position and orientation of the rigid body rp3d::Vector3 initPosition(position.x, position.y, position.z); rp3d::Quaternion initOrientation = rp3d::Quaternion::identity(); rp3d::Transform transform(initPosition, initOrientation); mPreviousTransform = transform; // Create a rigid body in the dynamics world mRigidBody = world->createCollisionBody(transform); // Add the collision shape to the body mRigidBody->addCollisionShape(collisionShape, rp3d::Transform::identity()); // If the Vertex Buffer object has not been created yet if (!areVBOsCreated) { // Create the Vertex Buffer createVBOAndVAO(shader); } mTransformMatrix = mTransformMatrix * mScalingMatrix; } // Constructor Box::Box(const openglframework::Vector3& size, const openglframework::Vector3 &position, float mass, reactphysics3d::DynamicsWorld* world, openglframework::Shader& shader) : openglframework::Object3D(), mColor(0.01f, 0.62f, 0.39f, 1.0f) { // Initialize the size of the box mSize[0] = size.x * 0.5f; mSize[1] = size.y * 0.5f; mSize[2] = size.z * 0.5f; // Compute the scaling matrix mScalingMatrix = openglframework::Matrix4(mSize[0], 0, 0, 0, 0, mSize[1], 0, 0, 0, 0, mSize[2], 0, 0, 0, 0, 1); // Initialize the position where the cube will be rendered translateWorld(position); // Create the collision shape for the rigid body (box shape) // ReactPhysics3D will clone this object to create an internal one. Therefore, // it is OK if this object is destroyed right after calling RigidBody::addCollisionShape() const rp3d::BoxShape collisionShape(rp3d::Vector3(mSize[0], mSize[1], mSize[2])); // Initial position and orientation of the rigid body rp3d::Vector3 initPosition(position.x, position.y, position.z); rp3d::Quaternion initOrientation = rp3d::Quaternion::identity(); rp3d::Transform transform(initPosition, initOrientation); // Create a rigid body in the dynamics world rp3d::RigidBody* body = world->createRigidBody(transform); // Add the collision shape to the body body->addCollisionShape(collisionShape, rp3d::Transform::identity(), mass); mRigidBody = body; // If the Vertex Buffer object has not been created yet if (!areVBOsCreated) { // Create the Vertex Buffer createVBOAndVAO(shader); } mTransformMatrix = mTransformMatrix * mScalingMatrix; } // Destructor Box::~Box() { if (areVBOsCreated) { // Destroy the VBOs and VAO mVBOIndices.destroy(); mVBOVertices.destroy(); mVAO.destroy(); areVBOsCreated = false; } } // Render the cube at the correct position and with the correct orientation void Box::render(openglframework::Shader& shader, const openglframework::Matrix4& worldToCameraMatrix) { // Bind the shader shader.bind(); // Set the model to camera matrix const openglframework::Matrix4 localToCameraMatrix = worldToCameraMatrix * mTransformMatrix; shader.setMatrix4x4Uniform("localToCameraMatrix", localToCameraMatrix); // Set the normal matrix (inverse transpose of the 3x3 upper-left sub matrix of the // model-view matrix) const openglframework::Matrix3 normalMatrix = localToCameraMatrix.getUpperLeft3x3Matrix().getInverse().getTranspose(); shader.setMatrix3x3Uniform("normalMatrix", normalMatrix); // Set the vertex color openglframework::Vector4 color(mColor.r, mColor.g, mColor.b, mColor.a); shader.setVector4Uniform("vertexColor", color); // Bind the VAO mVAO.bind(); // Draw the geometry of the box glDrawElements(GL_TRIANGLES, 36, GL_UNSIGNED_INT, (char*)NULL); // Unbind the VAO mVAO.unbind(); // Unbind the shader shader.unbind(); } // Update the transform matrix of the box void Box::updateTransform(float interpolationFactor) { // Get the transform of the rigid body rp3d::Transform transform = mRigidBody->getTransform(); // Interpolate the transform between the previous one and the new one rp3d::Transform interpolatedTransform = rp3d::Transform::interpolateTransforms(mPreviousTransform, transform, interpolationFactor); mPreviousTransform = transform; // Compute the transform used for rendering the box rp3d::decimal matrix[16]; interpolatedTransform.getOpenGLMatrix(matrix); openglframework::Matrix4 newMatrix(matrix[0], matrix[4], matrix[8], matrix[12], matrix[1], matrix[5], matrix[9], matrix[13], matrix[2], matrix[6], matrix[10], matrix[14], matrix[3], matrix[7], matrix[11], matrix[15]); // Apply the scaling matrix to have the correct box dimensions mTransformMatrix = newMatrix * mScalingMatrix; } // Create the Vertex Buffer Objects used to render to box with OpenGL. /// We create two VBOs (one for vertices and one for indices) to render all the boxes /// in the simulation. void Box::createVBOAndVAO(openglframework::Shader& shader) { // Bind the shader shader.bind(); // Get the location of shader attribute variables GLint vertexPositionLoc = shader.getAttribLocation("vertexPosition"); GLint vertexNormalLoc = shader.getAttribLocation("vertexNormal"); // Create the VBO for the vertices data mVBOVertices.create(); mVBOVertices.bind(); mVBOVertices.copyDataIntoVBO(sizeof(mCubeVertices), mCubeVertices, GL_STATIC_DRAW); mVBOVertices.unbind(); size_t test = sizeof(mCubeVertices); // Create th VBO for the indices data mVBOIndices.create(); mVBOIndices.bind(); mVBOIndices.copyDataIntoVBO(sizeof(mCubeIndices), mCubeIndices, GL_STATIC_DRAW); mVBOIndices.unbind(); // Create the VAO for both VBOs mVAO.create(); mVAO.bind(); // Bind the VBO of vertices mVBOVertices.bind(); glEnableVertexAttribArray(vertexPositionLoc); glEnableVertexAttribArray(vertexNormalLoc); glVertexAttribPointer(vertexPositionLoc, 3, GL_FLOAT, GL_FALSE, sizeof(VertexData), MEMBER_OFFSET(VertexData, position)); glVertexAttribPointer(vertexNormalLoc, 3, GL_FLOAT, GL_FALSE, sizeof(VertexData), MEMBER_OFFSET(VertexData, normal)); // Bind the VBO of indices mVBOIndices.bind(); // Unbind the VAO mVAO.unbind(); // Unbind the shader shader.unbind(); areVBOsCreated = true; }