/******************************************************************************** * ReactPhysics3D physics library, http://www.reactphysics3d.com * * Copyright (c) 2010-2016 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ #ifndef REACTPHYSICS3D_COLLISION_DETECTION_H #define REACTPHYSICS3D_COLLISION_DETECTION_H // Libraries #include "body/CollisionBody.h" #include "broadphase/BroadPhaseAlgorithm.h" #include "engine/OverlappingPair.h" #include "engine/EventListener.h" #include "narrowphase/DefaultCollisionDispatch.h" #include "memory/MemoryAllocator.h" #include "constraint/ContactPoint.h" #include #include #include #include /// ReactPhysics3D namespace namespace reactphysics3d { // Declarations class BroadPhaseAlgorithm; class CollisionWorld; class CollisionCallback; // Class TestCollisionBetweenShapesCallback class TestCollisionBetweenShapesCallback : public NarrowPhaseCallback { private: CollisionCallback* mCollisionCallback; public: // Constructor TestCollisionBetweenShapesCallback(CollisionCallback* callback) : mCollisionCallback(callback) { } // Called by a narrow-phase collision algorithm when a new contact has been found virtual void notifyContact(OverlappingPair* overlappingPair, const ContactPointInfo& contactInfo); }; // Class CollisionDetection /** * This class computes the collision detection algorithms. We first * perform a broad-phase algorithm to know which pairs of bodies can * collide and then we run a narrow-phase algorithm to compute the * collision contacts between bodies. */ class CollisionDetection : public NarrowPhaseCallback { private : // -------------------- Attributes -------------------- // /// Collision Detection Dispatch configuration CollisionDispatch* mCollisionDispatch; /// Default collision dispatch configuration DefaultCollisionDispatch mDefaultCollisionDispatch; /// Collision detection matrix (algorithms to use) NarrowPhaseAlgorithm* mCollisionMatrix[NB_COLLISION_SHAPE_TYPES][NB_COLLISION_SHAPE_TYPES]; /// Reference to the memory allocator MemoryAllocator& mMemoryAllocator; /// Pointer to the physics world CollisionWorld* mWorld; /// Broad-phase overlapping pairs std::map mOverlappingPairs; /// Overlapping pairs in contact (during the current Narrow-phase collision detection) std::map mContactOverlappingPairs; /// Broad-phase algorithm BroadPhaseAlgorithm mBroadPhaseAlgorithm; /// Narrow-phase GJK algorithm // TODO : Delete this GJKAlgorithm mNarrowPhaseGJKAlgorithm; /// Set of pair of bodies that cannot collide between each other std::set mNoCollisionPairs; /// True if some collision shapes have been added previously bool mIsCollisionShapesAdded; // -------------------- Methods -------------------- // /// Compute the broad-phase collision detection void computeBroadPhase(); /// Compute the narrow-phase collision detection void computeNarrowPhase(); /// Add a contact manifold to the linked list of contact manifolds of the two bodies /// involed in the corresponding contact. void addContactManifoldToBody(OverlappingPair* pair); /// Delete all the contact points in the currently overlapping pairs void clearContactPoints(); /// Fill-in the collision detection matrix void fillInCollisionMatrix(); /// Add all the contact manifold of colliding pairs to their bodies void addAllContactManifoldsToBodies(); public : // -------------------- Methods -------------------- // /// Constructor CollisionDetection(CollisionWorld* world, MemoryAllocator& memoryAllocator); /// Destructor ~CollisionDetection(); /// Deleted copy-constructor CollisionDetection(const CollisionDetection& collisionDetection) = delete; /// Deleted assignment operator CollisionDetection& operator=(const CollisionDetection& collisionDetection) = delete; /// Set the collision dispatch configuration void setCollisionDispatch(CollisionDispatch* collisionDispatch); /// Return the Narrow-phase collision detection algorithm to use between two types of shapes NarrowPhaseAlgorithm* getCollisionAlgorithm(CollisionShapeType shape1Type, CollisionShapeType shape2Type) const; /// Add a proxy collision shape to the collision detection void addProxyCollisionShape(ProxyShape* proxyShape, const AABB& aabb); /// Remove a proxy collision shape from the collision detection void removeProxyCollisionShape(ProxyShape* proxyShape); /// Update a proxy collision shape (that has moved for instance) void updateProxyCollisionShape(ProxyShape* shape, const AABB& aabb, const Vector3& displacement = Vector3(0, 0, 0), bool forceReinsert = false); /// Add a pair of bodies that cannot collide with each other void addNoCollisionPair(CollisionBody* body1, CollisionBody* body2); /// Remove a pair of bodies that cannot collide with each other void removeNoCollisionPair(CollisionBody* body1, CollisionBody* body2); /// Ask for a collision shape to be tested again during broad-phase. void askForBroadPhaseCollisionCheck(ProxyShape* shape); /// Compute the collision detection void computeCollisionDetection(); /// Compute the collision detection void testCollisionBetweenShapes(CollisionCallback* callback, const std::set& shapes1, const std::set& shapes2); /// Report collision between two sets of shapes void reportCollisionBetweenShapes(CollisionCallback* callback, const std::set& shapes1, const std::set& shapes2) ; /// Ray casting method void raycast(RaycastCallback* raycastCallback, const Ray& ray, unsigned short raycastWithCategoryMaskBits) const; /// Test if the AABBs of two bodies overlap bool testAABBOverlap(const CollisionBody* body1, const CollisionBody* body2) const; /// Test if the AABBs of two proxy shapes overlap bool testAABBOverlap(const ProxyShape* shape1, const ProxyShape* shape2) const; /// Allow the broadphase to notify the collision detection about an overlapping pair. void broadPhaseNotifyOverlappingPair(ProxyShape* shape1, ProxyShape* shape2); /// Compute the narrow-phase collision detection void computeNarrowPhaseBetweenShapes(CollisionCallback* callback, const std::set& shapes1, const std::set& shapes2); /// Return a pointer to the world CollisionWorld* getWorld(); /// Return the world event listener EventListener* getWorldEventListener(); /// Return a reference to the world memory allocator MemoryAllocator& getWorldMemoryAllocator(); /// Called by a narrow-phase collision algorithm when a new contact has been found virtual void notifyContact(OverlappingPair* overlappingPair, const ContactPointInfo& contactInfo); /// Create a new contact void createContact(OverlappingPair* overlappingPair, const ContactPointInfo& contactInfo); // -------------------- Friendship -------------------- // friend class DynamicsWorld; friend class ConvexMeshShape; }; // Return the Narrow-phase collision detection algorithm to use between two types of shapes inline NarrowPhaseAlgorithm* CollisionDetection::getCollisionAlgorithm(CollisionShapeType shape1Type, CollisionShapeType shape2Type) const { return mCollisionMatrix[static_cast(shape1Type)][static_cast(shape2Type)]; } // Set the collision dispatch configuration inline void CollisionDetection::setCollisionDispatch(CollisionDispatch* collisionDispatch) { mCollisionDispatch = collisionDispatch; mCollisionDispatch->init(this, &mMemoryAllocator); // Fill-in the collision matrix with the new algorithms to use fillInCollisionMatrix(); } // Add a body to the collision detection inline void CollisionDetection::addProxyCollisionShape(ProxyShape* proxyShape, const AABB& aabb) { // Add the body to the broad-phase mBroadPhaseAlgorithm.addProxyCollisionShape(proxyShape, aabb); mIsCollisionShapesAdded = true; } // Add a pair of bodies that cannot collide with each other inline void CollisionDetection::addNoCollisionPair(CollisionBody* body1, CollisionBody* body2) { mNoCollisionPairs.insert(OverlappingPair::computeBodiesIndexPair(body1, body2)); } // Remove a pair of bodies that cannot collide with each other inline void CollisionDetection::removeNoCollisionPair(CollisionBody* body1, CollisionBody* body2) { mNoCollisionPairs.erase(OverlappingPair::computeBodiesIndexPair(body1, body2)); } // Ask for a collision shape to be tested again during broad-phase. /// We simply put the shape in the list of collision shape that have moved in the /// previous frame so that it is tested for collision again in the broad-phase. inline void CollisionDetection::askForBroadPhaseCollisionCheck(ProxyShape* shape) { mBroadPhaseAlgorithm.addMovedCollisionShape(shape->mBroadPhaseID); } // Update a proxy collision shape (that has moved for instance) inline void CollisionDetection::updateProxyCollisionShape(ProxyShape* shape, const AABB& aabb, const Vector3& displacement, bool forceReinsert) { mBroadPhaseAlgorithm.updateProxyCollisionShape(shape, aabb, displacement); } // Ray casting method inline void CollisionDetection::raycast(RaycastCallback* raycastCallback, const Ray& ray, unsigned short raycastWithCategoryMaskBits) const { PROFILE("CollisionDetection::raycast()"); RaycastTest rayCastTest(raycastCallback); // Ask the broad-phase algorithm to call the testRaycastAgainstShape() // callback method for each proxy shape hit by the ray in the broad-phase mBroadPhaseAlgorithm.raycast(ray, rayCastTest, raycastWithCategoryMaskBits); } // Test if the AABBs of two proxy shapes overlap inline bool CollisionDetection::testAABBOverlap(const ProxyShape* shape1, const ProxyShape* shape2) const { // If one of the shape's body is not active, we return no overlap if (!shape1->getBody()->isActive() || !shape2->getBody()->isActive()) { return false; } return mBroadPhaseAlgorithm.testOverlappingShapes(shape1, shape2); } // Return a pointer to the world inline CollisionWorld* CollisionDetection::getWorld() { return mWorld; } } #endif