/******************************************************************************** * ReactPhysics3D physics library, http://www.reactphysics3d.com * * Copyright (c) 2010-2016 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ // Libraries #include "mathematics_functions.h" #include "Vector3.h" #include #include using namespace reactphysics3d; /// Compute the barycentric coordinates u, v, w of a point p inside the triangle (a, b, c) /// This method uses the technique described in the book Real-Time collision detection by /// Christer Ericson. void reactphysics3d::computeBarycentricCoordinatesInTriangle(const Vector3& a, const Vector3& b, const Vector3& c, const Vector3& p, decimal& u, decimal& v, decimal& w) { const Vector3 v0 = b - a; const Vector3 v1 = c - a; const Vector3 v2 = p - a; decimal d00 = v0.dot(v0); decimal d01 = v0.dot(v1); decimal d11 = v1.dot(v1); decimal d20 = v2.dot(v0); decimal d21 = v2.dot(v1); decimal denom = d00 * d11 - d01 * d01; v = (d11 * d20 - d01 * d21) / denom; w = (d00 * d21 - d01 * d20) / denom; u = decimal(1.0) - v - w; } /// Clamp a vector such that it is no longer than a given maximum length Vector3 reactphysics3d::clamp(const Vector3& vector, decimal maxLength) { if (vector.lengthSquare() > maxLength * maxLength) { return vector.getUnit() * maxLength; } return vector; } /// Compute and return a point on segment from "segPointA" and "segPointB" that is closest to point "pointC" Vector3 reactphysics3d::computeClosestPointOnSegment(const Vector3& segPointA, const Vector3& segPointB, const Vector3& pointC) { const Vector3 ab = segPointB - segPointA; decimal abLengthSquare = ab.lengthSquare(); // If the segment has almost zero length if (abLengthSquare < MACHINE_EPSILON) { // Return one end-point of the segment as the closest point return segPointA; } // Project point C onto "AB" line decimal t = (pointC - segPointA).dot(ab) / abLengthSquare; // If projected point onto the line is outside the segment, clamp it to the segment if (t < decimal(0.0)) t = decimal(0.0); if (t > decimal(1.0)) t = decimal(1.0); // Return the closest point on the segment return segPointA + t * ab; } /// Compute the closest points between two segments /// This method uses the technique described in the book Real-Time /// collision detection by Christer Ericson. void reactphysics3d::computeClosestPointBetweenTwoSegments(const Vector3& seg1PointA, const Vector3& seg1PointB, const Vector3& seg2PointA, const Vector3& seg2PointB, Vector3& closestPointSeg1, Vector3& closestPointSeg2) { const Vector3 d1 = seg1PointB - seg1PointA; const Vector3 d2 = seg2PointB - seg2PointA; const Vector3 r = seg1PointA - seg2PointA; decimal a = d1.lengthSquare(); decimal e = d2.lengthSquare(); decimal f = d2.dot(r); decimal s, t; // If both segments degenerate into points if (a <= MACHINE_EPSILON && e <= MACHINE_EPSILON) { closestPointSeg1 = seg1PointA; closestPointSeg2 = seg2PointA; return; } if (a <= MACHINE_EPSILON) { // If first segment degenerates into a point s = decimal(0.0); // Compute the closest point on second segment t = clamp(f / e, decimal(0.0), decimal(1.0)); } else { decimal c = d1.dot(r); // If the second segment degenerates into a point if (e <= MACHINE_EPSILON) { t = decimal(0.0); s = clamp(-c / a, decimal(0.0), decimal(1.0)); } else { decimal b = d1.dot(d2); decimal denom = a * e - b * b; // If the segments are not parallel if (denom != decimal(0.0)) { // Compute the closest point on line 1 to line 2 and // clamp to first segment. s = clamp((b * f - c * e) / denom, decimal(0.0), decimal(1.0)); } else { // Pick an arbitrary point on first segment s = decimal(0.0); } // Compute the point on line 2 closest to the closest point // we have just found t = (b * s + f) / e; // If this closest point is inside second segment (t in [0, 1]), we are done. // Otherwise, we clamp the point to the second segment and compute again the // closest point on segment 1 if (t < decimal(0.0)) { t = decimal(0.0); s = clamp(-c / a, decimal(0.0), decimal(1.0)); } else if (t > decimal(1.0)) { t = decimal(1.0); s = clamp((b - c) / a, decimal(0.0), decimal(1.0)); } } } // Compute the closest points on both segments closestPointSeg1 = seg1PointA + d1 * s; closestPointSeg2 = seg2PointA + d2 * t; } /// Compute the intersection between a plane and a segment // Let the plane define by the equation planeNormal.dot(X) = planeD with X a point on the plane and "planeNormal" the plane normal. This method // computes the intersection P between the plane and the segment (segA, segB). The method returns the value "t" such // that P = segA + t * (segB - segA). Note that it only returns a value in [0, 1] if there is an intersection. Otherwise, // there is no intersection between the plane and the segment. decimal reactphysics3d::computePlaneSegmentIntersection(const Vector3& segA, const Vector3& segB, const decimal planeD, const Vector3& planeNormal) { const decimal parallelEpsilon = decimal(0.0001); decimal t = decimal(-1); // Segment AB const Vector3 ab = segB - segA; decimal nDotAB = planeNormal.dot(ab); // If the segment is not parallel to the plane if (std::abs(nDotAB) > parallelEpsilon) { t = (planeD - planeNormal.dot(segA)) / nDotAB; } return t; } // Compute the distance between a point "point" and a line given by the points "linePointA" and "linePointB" decimal reactphysics3d::computeDistancePointToLineDistance(const Vector3& linePointA, const Vector3& linePointB, const Vector3& point) { decimal distAB = (linePointB - linePointA).length(); if (distAB < MACHINE_EPSILON) { return (point - linePointA).length(); } return ((point - linePointA).cross(point - linePointB)).length() / distAB; } // Clip a segment against multiple planes and return the clipped segment vertices // This method implements the Sutherland–Hodgman clipping algorithm std::vector reactphysics3d::clipSegmentWithPlanes(const Vector3& segA, const Vector3& segB, const std::vector& planesPoints, const std::vector& planesNormals) { assert(planesPoints.size() == planesNormals.size()); std::vector inputVertices = {segA, segB}; std::vector outputVertices; // For each clipping plane for (uint p=0; p= decimal(0.0)) { // If the first vertex is not in front of the clippling plane if (v1DotN < decimal(0.0)) { // The second point we keep is the intersection between the segment v1, v2 and the clipping plane decimal t = computePlaneSegmentIntersection(v1, v2, planesNormals[p].dot(planesPoints[p]), planesNormals[p]); if (t >= decimal(0) && t <= decimal(1.0)) { outputVertices.push_back(v1 + t * (v2 - v1)); } else { outputVertices.push_back(v2); } } else { outputVertices.push_back(v1); } // Add the second vertex outputVertices.push_back(v2); } else { // If the second vertex is behind the clipping plane // If the first vertex is in front of the clippling plane if (v1DotN >= decimal(0.0)) { outputVertices.push_back(v1); // The first point we keep is the intersection between the segment v1, v2 and the clipping plane decimal t = computePlaneSegmentIntersection(v1, v2, -planesNormals[p].dot(planesPoints[p]), -planesNormals[p]); if (t >= decimal(0.0) && t <= decimal(1.0)) { outputVertices.push_back(v1 + t * (v2 - v1)); } } } inputVertices = outputVertices; } return outputVertices; } /// Clip a polygon against multiple planes and return the clipped polygon vertices /// This method implements the Sutherland–Hodgman clipping algorithm std::vector reactphysics3d::clipPolygonWithPlanes(const std::vector& polygonVertices, const std::vector& planesPoints, const std::vector& planesNormals) { assert(planesPoints.size() == planesNormals.size()); std::vector inputVertices(polygonVertices); std::vector outputVertices; // For each clipping plane for (uint p=0; p= decimal(0.0)) { // If the first vertex is not in front of the clippling plane if (v1DotN < decimal(0.0)) { // The second point we keep is the intersection between the segment v1, v2 and the clipping plane decimal t = computePlaneSegmentIntersection(v1, v2, planesNormals[p].dot(planesPoints[p]), planesNormals[p]); if (t >= decimal(0) && t <= decimal(1.0)) { outputVertices.push_back(v1 + t * (v2 - v1)); } else { outputVertices.push_back(v2); } } // Add the second vertex outputVertices.push_back(v2); } else { // If the second vertex is behind the clipping plane // If the first vertex is in front of the clippling plane if (v1DotN >= decimal(0.0)) { // The first point we keep is the intersection between the segment v1, v2 and the clipping plane decimal t = computePlaneSegmentIntersection(v1, v2, -planesNormals[p].dot(planesPoints[p]), -planesNormals[p]); if (t >= decimal(0.0) && t <= decimal(1.0)) { outputVertices.push_back(v1 + t * (v2 - v1)); } else { outputVertices.push_back(v1); } } } vStart = vEnd; } inputVertices = outputVertices; } return outputVertices; }