/******************************************************************************** * ReactPhysics3D physics library, http://www.reactphysics3d.com * * Copyright (c) 2010-2019 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ #ifndef REACTPHYSICS3D_RIGID_BODY_H #define REACTPHYSICS3D_RIGID_BODY_H // Libraries #include #include "CollisionBody.h" #include "engine/Material.h" #include "mathematics/mathematics.h" /// Namespace reactphysics3d namespace reactphysics3d { // Class declarations struct JointListElement; class Joint; class DynamicsWorld; class MemoryManager; // Class RigidBody /** * This class represents a rigid body of the physics * engine. A rigid body is a non-deformable body that * has a constant mass. This class inherits from the * CollisionBody class. */ class RigidBody : public CollisionBody { private : /// Index of the body in arrays for contact/constraint solver uint mArrayIndex; protected : // -------------------- Attributes -------------------- // /// Intial mass of the body decimal mInitMass; /// Center of mass of the body in local-space coordinates. /// The center of mass can therefore be different from the body origin Vector3 mCenterOfMassLocal; /// Center of mass of the body in world-space coordinates Vector3 mCenterOfMassWorld; /// Linear velocity of the body Vector3 mLinearVelocity; /// Angular velocity of the body Vector3 mAngularVelocity; /// Current external force on the body Vector3 mExternalForce; /// Current external torque on the body Vector3 mExternalTorque; /// Inverse Local inertia tensor of the body (in local-space) set /// by the user with respect to the center of mass of the body Matrix3x3 mUserInertiaTensorLocalInverse; /// Inverse of the inertia tensor of the body Matrix3x3 mInertiaTensorLocalInverse; /// Inverse of the world inertia tensor of the body Matrix3x3 mInertiaTensorInverseWorld; /// Inverse of the mass of the body decimal mMassInverse; /// True if the gravity needs to be applied to this rigid body bool mIsGravityEnabled; /// Material properties of the rigid body Material mMaterial; /// Linear velocity damping factor decimal mLinearDamping; /// Angular velocity damping factor decimal mAngularDamping; /// First element of the linked list of joints involving this body JointListElement* mJointsList; /// True if the center of mass is set by the user bool mIsCenterOfMassSetByUser; /// True if the inertia tensor is set by the user bool mIsInertiaTensorSetByUser; // -------------------- Methods -------------------- // /// Remove a joint from the joints list void removeJointFromJointsList(reactphysics3d::MemoryManager& memoryManager, const Joint* joint); /// Update the transform of the body after a change of the center of mass void updateTransformWithCenterOfMass(); /// Update the broad-phase state for this body (because it has moved for instance) virtual void updateBroadPhaseState() const override; /// Update the world inverse inertia tensor of the body void updateInertiaTensorInverseWorld(); public : // -------------------- Methods -------------------- // /// Constructor RigidBody(const Transform& transform, CollisionWorld& world, bodyindex id); /// Destructor virtual ~RigidBody() override; /// Deleted copy-constructor RigidBody(const RigidBody& body) = delete; /// Deleted assignment operator RigidBody& operator=(const RigidBody& body) = delete; /// Set the type of the body (static, kinematic or dynamic) void setType(BodyType type); /// Set the current position and orientation virtual void setTransform(const Transform& transform) override; /// Return the mass of the body decimal getMass() const; /// Return the linear velocity Vector3 getLinearVelocity() const; /// Set the linear velocity of the body. void setLinearVelocity(const Vector3& linearVelocity); /// Return the angular velocity Vector3 getAngularVelocity() const; /// Set the angular velocity. void setAngularVelocity(const Vector3& angularVelocity); /// Set the variable to know whether or not the body is sleeping virtual void setIsSleeping(bool isSleeping) override; /// Set the local inertia tensor of the body (in body coordinates) void setInertiaTensorLocal(const Matrix3x3& inertiaTensorLocal); /// Set the inverse local inertia tensor of the body (in body coordinates) void setInverseInertiaTensorLocal(const Matrix3x3& inverseInertiaTensorLocal); /// Get the inverse local inertia tensor of the body (in body coordinates) const Matrix3x3& getInverseInertiaTensorLocal() const; /// Return the inverse of the inertia tensor in world coordinates. Matrix3x3 getInertiaTensorInverseWorld() const; /// Set the local center of mass of the body (in local-space coordinates) void setCenterOfMassLocal(const Vector3& centerOfMassLocal); /// Set the mass of the rigid body void setMass(decimal mass); /// Return true if the gravity needs to be applied to this rigid body bool isGravityEnabled() const; /// Set the variable to know if the gravity is applied to this rigid body void enableGravity(bool isEnabled); /// Return a reference to the material properties of the rigid body Material& getMaterial(); /// Set a new material for this rigid body void setMaterial(const Material& material); /// Return the linear velocity damping factor decimal getLinearDamping() const; /// Set the linear damping factor void setLinearDamping(decimal linearDamping); /// Return the angular velocity damping factor decimal getAngularDamping() const; /// Set the angular damping factor void setAngularDamping(decimal angularDamping); /// Return the first element of the linked list of joints involving this body const JointListElement* getJointsList() const; /// Return the first element of the linked list of joints involving this body JointListElement* getJointsList(); /// Apply an external force to the body at its center of mass. void applyForceToCenterOfMass(const Vector3& force); /// Apply an external force to the body at a given point (in world-space coordinates). void applyForce(const Vector3& force, const Vector3& point); /// Apply an external torque to the body. void applyTorque(const Vector3& torque); /// Add a collision shape to the body. virtual ProxyShape* addCollisionShape(CollisionShape* collisionShape, const Transform& transform, decimal mass); /// Remove a collision shape from the body virtual void removeCollisionShape(const ProxyShape* proxyShape) override; /// Recompute the center of mass, total mass and inertia tensor of the body using all /// the collision shapes attached to the body. void recomputeMassInformation(); #ifdef IS_PROFILING_ACTIVE /// Set the profiler void setProfiler(Profiler* profiler) override; #endif // -------------------- Friendship -------------------- // friend class DynamicsWorld; friend class ContactSolver; friend class BallAndSocketJoint; friend class SliderJoint; friend class HingeJoint; friend class FixedJoint; }; // Method that return the mass of the body /** * @return The mass (in kilograms) of the body */ inline decimal RigidBody::getMass() const { return mInitMass; } // Return the linear velocity /** * @return The linear velocity vector of the body */ inline Vector3 RigidBody::getLinearVelocity() const { return mLinearVelocity; } // Return the angular velocity of the body /** * @return The angular velocity vector of the body */ inline Vector3 RigidBody::getAngularVelocity() const { return mAngularVelocity; } // Get the inverse local inertia tensor of the body (in body coordinates) inline const Matrix3x3& RigidBody::getInverseInertiaTensorLocal() const { return mInertiaTensorLocalInverse; } // Return the inverse of the inertia tensor in world coordinates. /// The inertia tensor I_w in world coordinates is computed with the /// local inverse inertia tensor I_b^-1 in body coordinates /// by I_w = R * I_b^-1 * R^T /// where R is the rotation matrix (and R^T its transpose) of the /// current orientation quaternion of the body /** * @return The 3x3 inverse inertia tensor matrix of the body in world-space * coordinates */ inline Matrix3x3 RigidBody::getInertiaTensorInverseWorld() const { // Compute and return the inertia tensor in world coordinates return mInertiaTensorInverseWorld; } // Update the world inverse inertia tensor of the body /// The inertia tensor I_w in world coordinates is computed with the /// local inverse inertia tensor I_b^-1 in body coordinates /// by I_w = R * I_b^-1 * R^T /// where R is the rotation matrix (and R^T its transpose) of the /// current orientation quaternion of the body inline void RigidBody::updateInertiaTensorInverseWorld() { Matrix3x3 orientation = mTransform.getOrientation().getMatrix(); mInertiaTensorInverseWorld = orientation * mInertiaTensorLocalInverse * orientation.getTranspose(); } // Return true if the gravity needs to be applied to this rigid body /** * @return True if the gravity is applied to the body */ inline bool RigidBody::isGravityEnabled() const { return mIsGravityEnabled; } // Return a reference to the material properties of the rigid body /** * @return A reference to the material of the body */ inline Material& RigidBody::getMaterial() { return mMaterial; } // Return the linear velocity damping factor /** * @return The linear damping factor of this body */ inline decimal RigidBody::getLinearDamping() const { return mLinearDamping; } // Return the angular velocity damping factor /** * @return The angular damping factor of this body */ inline decimal RigidBody::getAngularDamping() const { return mAngularDamping; } // Return the first element of the linked list of joints involving this body /** * @return The first element of the linked-list of all the joints involving this body */ inline const JointListElement* RigidBody::getJointsList() const { return mJointsList; } // Return the first element of the linked list of joints involving this body /** * @return The first element of the linked-list of all the joints involving this body */ inline JointListElement* RigidBody::getJointsList() { return mJointsList; } // Set the variable to know whether or not the body is sleeping inline void RigidBody::setIsSleeping(bool isSleeping) { if (isSleeping) { mLinearVelocity.setToZero(); mAngularVelocity.setToZero(); mExternalForce.setToZero(); mExternalTorque.setToZero(); } Body::setIsSleeping(isSleeping); } // Apply an external force to the body at its center of mass. /// If the body is sleeping, calling this method will wake it up. Note that the /// force will we added to the sum of the applied forces and that this sum will be /// reset to zero at the end of each call of the DynamicsWorld::update() method. /// You can only apply a force to a dynamic body otherwise, this method will do nothing. /** * @param force The external force to apply on the center of mass of the body */ inline void RigidBody::applyForceToCenterOfMass(const Vector3& force) { // If it is not a dynamic body, we do nothing if (mType != BodyType::DYNAMIC) return; // Awake the body if it was sleeping if (mIsSleeping) { setIsSleeping(false); } // Add the force mExternalForce += force; } // Apply an external force to the body at a given point (in world-space coordinates). /// If the point is not at the center of mass of the body, it will also /// generate some torque and therefore, change the angular velocity of the body. /// If the body is sleeping, calling this method will wake it up. Note that the /// force will we added to the sum of the applied forces and that this sum will be /// reset to zero at the end of each call of the DynamicsWorld::update() method. /// You can only apply a force to a dynamic body otherwise, this method will do nothing. /** * @param force The force to apply on the body * @param point The point where the force is applied (in world-space coordinates) */ inline void RigidBody::applyForce(const Vector3& force, const Vector3& point) { // If it is not a dynamic body, we do nothing if (mType != BodyType::DYNAMIC) return; // Awake the body if it was sleeping if (mIsSleeping) { setIsSleeping(false); } // Add the force and torque mExternalForce += force; mExternalTorque += (point - mCenterOfMassWorld).cross(force); } // Apply an external torque to the body. /// If the body is sleeping, calling this method will wake it up. Note that the /// force will we added to the sum of the applied torques and that this sum will be /// reset to zero at the end of each call of the DynamicsWorld::update() method. /// You can only apply a force to a dynamic body otherwise, this method will do nothing. /** * @param torque The external torque to apply on the body */ inline void RigidBody::applyTorque(const Vector3& torque) { // If it is not a dynamic body, we do nothing if (mType != BodyType::DYNAMIC) return; // Awake the body if it was sleeping if (mIsSleeping) { setIsSleeping(false); } // Add the torque mExternalTorque += torque; } /// Update the transform of the body after a change of the center of mass inline void RigidBody::updateTransformWithCenterOfMass() { // Translate the body according to the translation of the center of mass position mTransform.setPosition(mCenterOfMassWorld - mTransform.getOrientation() * mCenterOfMassLocal); } } #endif