/******************************************************************************** * ReactPhysics3D physics library, http://www.reactphysics3d.com * * Copyright (c) 2010-2019 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ // Libraries #include "BallAndSocketJoint.h" #include "engine/ConstraintSolver.h" using namespace reactphysics3d; // Static variables definition const decimal BallAndSocketJoint::BETA = decimal(0.2); // Constructor BallAndSocketJoint::BallAndSocketJoint(uint id, const BallAndSocketJointInfo& jointInfo) : Joint(id, jointInfo), mImpulse(Vector3(0, 0, 0)) { // Compute the local-space anchor point for each body mLocalAnchorPointBody1 = mBody1->getTransform().getInverse() * jointInfo.anchorPointWorldSpace; mLocalAnchorPointBody2 = mBody2->getTransform().getInverse() * jointInfo.anchorPointWorldSpace; } // Initialize before solving the constraint void BallAndSocketJoint::initBeforeSolve(const ConstraintSolverData& constraintSolverData) { // Initialize the bodies index in the velocity array mIndexBody1 = mBody1->mArrayIndex; mIndexBody2 = mBody2->mArrayIndex; // Get the bodies center of mass and orientations const Vector3& x1 = mBody1->mCenterOfMassWorld; const Vector3& x2 = mBody2->mCenterOfMassWorld; const Quaternion& orientationBody1 = mBody1->getTransform().getOrientation(); const Quaternion& orientationBody2 = mBody2->getTransform().getOrientation(); // Get the inertia tensor of bodies mI1 = mBody1->getInertiaTensorInverseWorld(); mI2 = mBody2->getInertiaTensorInverseWorld(); // Compute the vector from body center to the anchor point in world-space mR1World = orientationBody1 * mLocalAnchorPointBody1; mR2World = orientationBody2 * mLocalAnchorPointBody2; // Compute the corresponding skew-symmetric matrices Matrix3x3 skewSymmetricMatrixU1= Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(mR1World); Matrix3x3 skewSymmetricMatrixU2= Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(mR2World); // Compute the matrix K=JM^-1J^t (3x3 matrix) decimal inverseMassBodies = mBody1->mMassInverse + mBody2->mMassInverse; Matrix3x3 massMatrix = Matrix3x3(inverseMassBodies, 0, 0, 0, inverseMassBodies, 0, 0, 0, inverseMassBodies) + skewSymmetricMatrixU1 * mI1 * skewSymmetricMatrixU1.getTranspose() + skewSymmetricMatrixU2 * mI2 * skewSymmetricMatrixU2.getTranspose(); // Compute the inverse mass matrix K^-1 mInverseMassMatrix.setToZero(); if (mBody1->getType() == BodyType::DYNAMIC || mBody2->getType() == BodyType::DYNAMIC) { mInverseMassMatrix = massMatrix.getInverse(); } // Compute the bias "b" of the constraint mBiasVector.setToZero(); if (mPositionCorrectionTechnique == JointsPositionCorrectionTechnique::BAUMGARTE_JOINTS) { decimal biasFactor = (BETA / constraintSolverData.timeStep); mBiasVector = biasFactor * (x2 + mR2World - x1 - mR1World); } // If warm-starting is not enabled if (!constraintSolverData.isWarmStartingActive) { // Reset the accumulated impulse mImpulse.setToZero(); } } // Warm start the constraint (apply the previous impulse at the beginning of the step) void BallAndSocketJoint::warmstart(const ConstraintSolverData& constraintSolverData) { // Get the velocities Vector3& v1 = constraintSolverData.linearVelocities[mIndexBody1]; Vector3& v2 = constraintSolverData.linearVelocities[mIndexBody2]; Vector3& w1 = constraintSolverData.angularVelocities[mIndexBody1]; Vector3& w2 = constraintSolverData.angularVelocities[mIndexBody2]; // Compute the impulse P=J^T * lambda for the body 1 const Vector3 linearImpulseBody1 = -mImpulse; const Vector3 angularImpulseBody1 = mImpulse.cross(mR1World); // Apply the impulse to the body 1 v1 += mBody1->mMassInverse * linearImpulseBody1; w1 += mI1 * angularImpulseBody1; // Compute the impulse P=J^T * lambda for the body 2 const Vector3 angularImpulseBody2 = -mImpulse.cross(mR2World); // Apply the impulse to the body to the body 2 v2 += mBody2->mMassInverse * mImpulse; w2 += mI2 * angularImpulseBody2; } // Solve the velocity constraint void BallAndSocketJoint::solveVelocityConstraint(const ConstraintSolverData& constraintSolverData) { // Get the velocities Vector3& v1 = constraintSolverData.linearVelocities[mIndexBody1]; Vector3& v2 = constraintSolverData.linearVelocities[mIndexBody2]; Vector3& w1 = constraintSolverData.angularVelocities[mIndexBody1]; Vector3& w2 = constraintSolverData.angularVelocities[mIndexBody2]; // Compute J*v const Vector3 Jv = v2 + w2.cross(mR2World) - v1 - w1.cross(mR1World); // Compute the Lagrange multiplier lambda const Vector3 deltaLambda = mInverseMassMatrix * (-Jv - mBiasVector); mImpulse += deltaLambda; // Compute the impulse P=J^T * lambda for the body 1 const Vector3 linearImpulseBody1 = -deltaLambda; const Vector3 angularImpulseBody1 = deltaLambda.cross(mR1World); // Apply the impulse to the body 1 v1 += mBody1->mMassInverse * linearImpulseBody1; w1 += mI1 * angularImpulseBody1; // Compute the impulse P=J^T * lambda for the body 2 const Vector3 angularImpulseBody2 = -deltaLambda.cross(mR2World); // Apply the impulse to the body 2 v2 += mBody2->mMassInverse * deltaLambda; w2 += mI2 * angularImpulseBody2; } // Solve the position constraint (for position error correction) void BallAndSocketJoint::solvePositionConstraint(const ConstraintSolverData& constraintSolverData) { // If the error position correction technique is not the non-linear-gauss-seidel, we do // do not execute this method if (mPositionCorrectionTechnique != JointsPositionCorrectionTechnique::NON_LINEAR_GAUSS_SEIDEL) return; // Get the bodies center of mass and orientations Vector3& x1 = constraintSolverData.positions[mIndexBody1]; Vector3& x2 = constraintSolverData.positions[mIndexBody2]; Quaternion& q1 = constraintSolverData.orientations[mIndexBody1]; Quaternion& q2 = constraintSolverData.orientations[mIndexBody2]; // Get the inverse mass and inverse inertia tensors of the bodies decimal inverseMassBody1 = mBody1->mMassInverse; decimal inverseMassBody2 = mBody2->mMassInverse; // Recompute the inverse inertia tensors mI1 = mBody1->getInertiaTensorInverseWorld(); mI2 = mBody2->getInertiaTensorInverseWorld(); // Compute the vector from body center to the anchor point in world-space mR1World = q1 * mLocalAnchorPointBody1; mR2World = q2 * mLocalAnchorPointBody2; // Compute the corresponding skew-symmetric matrices Matrix3x3 skewSymmetricMatrixU1= Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(mR1World); Matrix3x3 skewSymmetricMatrixU2= Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(mR2World); // Recompute the inverse mass matrix K=J^TM^-1J of of the 3 translation constraints decimal inverseMassBodies = inverseMassBody1 + inverseMassBody2; Matrix3x3 massMatrix = Matrix3x3(inverseMassBodies, 0, 0, 0, inverseMassBodies, 0, 0, 0, inverseMassBodies) + skewSymmetricMatrixU1 * mI1 * skewSymmetricMatrixU1.getTranspose() + skewSymmetricMatrixU2 * mI2 * skewSymmetricMatrixU2.getTranspose(); mInverseMassMatrix.setToZero(); if (mBody1->getType() == BodyType::DYNAMIC || mBody2->getType() == BodyType::DYNAMIC) { mInverseMassMatrix = massMatrix.getInverse(); } // Compute the constraint error (value of the C(x) function) const Vector3 constraintError = (x2 + mR2World - x1 - mR1World); // Compute the Lagrange multiplier lambda // TODO : Do not solve the system by computing the inverse each time and multiplying with the // right-hand side vector but instead use a method to directly solve the linear system. const Vector3 lambda = mInverseMassMatrix * (-constraintError); // Compute the impulse of body 1 const Vector3 linearImpulseBody1 = -lambda; const Vector3 angularImpulseBody1 = lambda.cross(mR1World); // Compute the pseudo velocity of body 1 const Vector3 v1 = inverseMassBody1 * linearImpulseBody1; const Vector3 w1 = mI1 * angularImpulseBody1; // Update the body center of mass and orientation of body 1 x1 += v1; q1 += Quaternion(0, w1) * q1 * decimal(0.5); q1.normalize(); // Compute the impulse of body 2 const Vector3 angularImpulseBody2 = -lambda.cross(mR2World); // Compute the pseudo velocity of body 2 const Vector3 v2 = inverseMassBody2 * lambda; const Vector3 w2 = mI2 * angularImpulseBody2; // Update the body position/orientation of body 2 x2 += v2; q2 += Quaternion(0, w2) * q2 * decimal(0.5); q2.normalize(); }