reactphysics3d/src/components/BallAndSocketJointComponents.cpp

297 lines
17 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2022 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
// Libraries
#include <reactphysics3d/components/BallAndSocketJointComponents.h>
#include <reactphysics3d/engine/EntityManager.h>
#include <reactphysics3d/mathematics/Matrix3x3.h>
#include <cassert>
// We want to use the ReactPhysics3D namespace
using namespace reactphysics3d;
// Constructor
BallAndSocketJointComponents::BallAndSocketJointComponents(MemoryAllocator& allocator)
:Components(allocator, sizeof(Entity) + sizeof(BallAndSocketJoint*) + sizeof(Vector3) +
sizeof(Vector3) + sizeof(Vector3) + sizeof(Vector3) +
sizeof(Matrix3x3) + sizeof(Matrix3x3) + sizeof(Vector3) +
sizeof(Matrix3x3) + sizeof(Vector3) + sizeof(bool) + sizeof(decimal) +
sizeof(decimal) + sizeof(decimal) + sizeof(decimal) + sizeof(bool) + sizeof(Vector3),
18 * GLOBAL_ALIGNMENT) {
}
// Allocate memory for a given number of components
void BallAndSocketJointComponents::allocate(uint32 nbComponentsToAllocate) {
assert(nbComponentsToAllocate > mNbAllocatedComponents);
// Size for the data of a single component (in bytes)
const size_t totalSizeBytes = nbComponentsToAllocate * mComponentDataSize + mAlignmentMarginSize;
// Allocate memory
void* newBuffer = mMemoryAllocator.allocate(totalSizeBytes);
assert(newBuffer != nullptr);
assert(reinterpret_cast<uintptr_t>(newBuffer) % GLOBAL_ALIGNMENT == 0);
// New pointers to components data
Entity* newJointEntities = static_cast<Entity*>(newBuffer);
assert(reinterpret_cast<uintptr_t>(newJointEntities) % GLOBAL_ALIGNMENT == 0);
BallAndSocketJoint** newJoints = reinterpret_cast<BallAndSocketJoint**>(MemoryAllocator::alignAddress(newJointEntities + nbComponentsToAllocate, GLOBAL_ALIGNMENT));
assert(reinterpret_cast<uintptr_t>(newJoints) % GLOBAL_ALIGNMENT == 0);
Vector3* newLocalAnchorPointBody1 = reinterpret_cast<Vector3*>(MemoryAllocator::alignAddress(newJoints + nbComponentsToAllocate, GLOBAL_ALIGNMENT));
assert(reinterpret_cast<uintptr_t>(newLocalAnchorPointBody1) % GLOBAL_ALIGNMENT == 0);
Vector3* newLocalAnchorPointBody2 = reinterpret_cast<Vector3*>(MemoryAllocator::alignAddress(newLocalAnchorPointBody1 + nbComponentsToAllocate, GLOBAL_ALIGNMENT));
assert(reinterpret_cast<uintptr_t>(newLocalAnchorPointBody2) % GLOBAL_ALIGNMENT == 0);
Vector3* newR1World = reinterpret_cast<Vector3*>(MemoryAllocator::alignAddress(newLocalAnchorPointBody2 + nbComponentsToAllocate, GLOBAL_ALIGNMENT));
assert(reinterpret_cast<uintptr_t>(newR1World) % GLOBAL_ALIGNMENT == 0);
Vector3* newR2World = reinterpret_cast<Vector3*>(MemoryAllocator::alignAddress(newR1World + nbComponentsToAllocate, GLOBAL_ALIGNMENT));
assert(reinterpret_cast<uintptr_t>(newR2World) % GLOBAL_ALIGNMENT == 0);
Matrix3x3* newI1 = reinterpret_cast<Matrix3x3*>(MemoryAllocator::alignAddress(newR2World + nbComponentsToAllocate, GLOBAL_ALIGNMENT));
assert(reinterpret_cast<uintptr_t>(newI1) % GLOBAL_ALIGNMENT == 0);
Matrix3x3* newI2 = reinterpret_cast<Matrix3x3*>(MemoryAllocator::alignAddress(newI1 + nbComponentsToAllocate, GLOBAL_ALIGNMENT));
assert(reinterpret_cast<uintptr_t>(newI2) % GLOBAL_ALIGNMENT == 0);
Vector3* newBiasVector = reinterpret_cast<Vector3*>(MemoryAllocator::alignAddress(newI2 + nbComponentsToAllocate, GLOBAL_ALIGNMENT));
assert(reinterpret_cast<uintptr_t>(newBiasVector) % GLOBAL_ALIGNMENT == 0);
Matrix3x3* newInverseMassMatrix = reinterpret_cast<Matrix3x3*>(MemoryAllocator::alignAddress(newBiasVector + nbComponentsToAllocate, GLOBAL_ALIGNMENT));
assert(reinterpret_cast<uintptr_t>(newInverseMassMatrix) % GLOBAL_ALIGNMENT == 0);
Vector3* newImpulse = reinterpret_cast<Vector3*>(MemoryAllocator::alignAddress(newInverseMassMatrix + nbComponentsToAllocate, GLOBAL_ALIGNMENT));
assert(reinterpret_cast<uintptr_t>(newImpulse) % GLOBAL_ALIGNMENT == 0);
bool* newIsConeLimitEnabled = reinterpret_cast<bool*>(MemoryAllocator::alignAddress(newImpulse + nbComponentsToAllocate, GLOBAL_ALIGNMENT));
assert(reinterpret_cast<uintptr_t>(newIsConeLimitEnabled) % GLOBAL_ALIGNMENT == 0);
decimal* newConeLimitImpulse = reinterpret_cast<decimal*>(MemoryAllocator::alignAddress(newIsConeLimitEnabled + nbComponentsToAllocate, GLOBAL_ALIGNMENT));
assert(reinterpret_cast<uintptr_t>(newConeLimitImpulse) % GLOBAL_ALIGNMENT == 0);
decimal* newConeLimitHalfAngle = reinterpret_cast<decimal*>(MemoryAllocator::alignAddress(newConeLimitImpulse + nbComponentsToAllocate, GLOBAL_ALIGNMENT));
assert(reinterpret_cast<uintptr_t>(newConeLimitHalfAngle) % GLOBAL_ALIGNMENT == 0);
decimal* newInverseMassMatrixConeLimit = reinterpret_cast<decimal*>(MemoryAllocator::alignAddress(newConeLimitHalfAngle + nbComponentsToAllocate, GLOBAL_ALIGNMENT));
assert(reinterpret_cast<uintptr_t>(newInverseMassMatrixConeLimit) % GLOBAL_ALIGNMENT == 0);
decimal* newBConeLimit = reinterpret_cast<decimal*>(MemoryAllocator::alignAddress(newInverseMassMatrixConeLimit + nbComponentsToAllocate, GLOBAL_ALIGNMENT));
assert(reinterpret_cast<uintptr_t>(newBConeLimit) % GLOBAL_ALIGNMENT == 0);
bool* newIsConeLimitViolated = reinterpret_cast<bool*>(MemoryAllocator::alignAddress(newBConeLimit + nbComponentsToAllocate, GLOBAL_ALIGNMENT));
assert(reinterpret_cast<uintptr_t>(newIsConeLimitViolated) % GLOBAL_ALIGNMENT == 0);
Vector3* newConeLimitACrossB = reinterpret_cast<Vector3*>(MemoryAllocator::alignAddress(newIsConeLimitViolated + nbComponentsToAllocate, GLOBAL_ALIGNMENT));
assert(reinterpret_cast<uintptr_t>(newConeLimitACrossB) % GLOBAL_ALIGNMENT == 0);
assert(reinterpret_cast<uintptr_t>(newConeLimitACrossB + nbComponentsToAllocate) <= reinterpret_cast<uintptr_t>(newBuffer) + totalSizeBytes);
// If there was already components before
if (mNbComponents > 0) {
// Copy component data from the previous buffer to the new one
memcpy(newJointEntities, mJointEntities, mNbComponents * sizeof(Entity));
memcpy(newJoints, mJoints, mNbComponents * sizeof(BallAndSocketJoint*));
memcpy(newLocalAnchorPointBody1, mLocalAnchorPointBody1, mNbComponents * sizeof(Vector3));
memcpy(newLocalAnchorPointBody2, mLocalAnchorPointBody2, mNbComponents * sizeof(Vector3));
memcpy(newR1World, mR1World, mNbComponents * sizeof(Vector3));
memcpy(newR2World, mR2World, mNbComponents * sizeof(Vector3));
memcpy(newI1, mI1, mNbComponents * sizeof(Matrix3x3));
memcpy(newI2, mI2, mNbComponents * sizeof(Matrix3x3));
memcpy(newBiasVector, mBiasVector, mNbComponents * sizeof(Vector3));
memcpy(newInverseMassMatrix, mInverseMassMatrix, mNbComponents * sizeof(Matrix3x3));
memcpy(newImpulse, mImpulse, mNbComponents * sizeof(Vector3));
memcpy(newIsConeLimitEnabled, mIsConeLimitEnabled, mNbComponents * sizeof(bool));
memcpy(newConeLimitImpulse, mConeLimitImpulse, mNbComponents * sizeof(decimal));
memcpy(newConeLimitHalfAngle, mConeLimitHalfAngle, mNbComponents * sizeof(decimal));
memcpy(newInverseMassMatrixConeLimit, mInverseMassMatrixConeLimit, mNbComponents * sizeof(decimal));
memcpy(newBConeLimit, mBConeLimit, mNbComponents * sizeof(decimal));
memcpy(newIsConeLimitViolated, mIsConeLimitViolated, mNbComponents * sizeof(bool));
memcpy(newConeLimitACrossB, mConeLimitACrossB, mNbComponents * sizeof(Vector3));
// Deallocate previous memory
mMemoryAllocator.release(mBuffer, mNbAllocatedComponents * mComponentDataSize);
}
mBuffer = newBuffer;
mJointEntities = newJointEntities;
mJoints = newJoints;
mNbAllocatedComponents = nbComponentsToAllocate;
mLocalAnchorPointBody1 = newLocalAnchorPointBody1;
mLocalAnchorPointBody2 = newLocalAnchorPointBody2;
mR1World = newR1World;
mR2World = newR2World;
mI1 = newI1;
mI2 = newI2;
mBiasVector = newBiasVector;
mInverseMassMatrix = newInverseMassMatrix;
mImpulse = newImpulse;
mIsConeLimitEnabled = newIsConeLimitEnabled;
mConeLimitImpulse = newConeLimitImpulse;
mConeLimitHalfAngle = newConeLimitHalfAngle;
mInverseMassMatrixConeLimit = newInverseMassMatrixConeLimit;
mBConeLimit = newBConeLimit;
mIsConeLimitViolated = newIsConeLimitViolated;
mConeLimitACrossB = newConeLimitACrossB;
}
// Add a component
void BallAndSocketJointComponents::addComponent(Entity jointEntity, bool isSleeping, const BallAndSocketJointComponent& component) {
// Prepare to add new component (allocate memory if necessary and compute insertion index)
uint32 index = prepareAddComponent(isSleeping);
// Insert the new component data
new (mJointEntities + index) Entity(jointEntity);
mJoints[index] = nullptr;
new (mLocalAnchorPointBody1 + index) Vector3(0, 0, 0);
new (mLocalAnchorPointBody2 + index) Vector3(0, 0, 0);
new (mR1World + index) Vector3(0, 0, 0);
new (mR2World + index) Vector3(0, 0, 0);
new (mI1 + index) Matrix3x3();
new (mI2 + index) Matrix3x3();
new (mBiasVector + index) Vector3(0, 0, 0);
new (mInverseMassMatrix + index) Matrix3x3();
new (mImpulse + index) Vector3(0, 0, 0);
mIsConeLimitEnabled[index] = component.isConeLimitEnabled;
mConeLimitImpulse[index] = decimal(0.0);
mConeLimitHalfAngle[index] = component.coneLimitHalfAngle;
mInverseMassMatrixConeLimit[index] = decimal(0.0);
mBConeLimit[index] = decimal(0.0);
mIsConeLimitViolated[index] = false;
new (mConeLimitACrossB + index) Vector3(0, 0, 0);
// Map the entity with the new component lookup index
mMapEntityToComponentIndex.add(Pair<Entity, uint32>(jointEntity, index));
mNbComponents++;
assert(mDisabledStartIndex <= mNbComponents);
assert(mNbComponents == static_cast<uint32>(mMapEntityToComponentIndex.size()));
}
// Move a component from a source to a destination index in the components array
// The destination location must contain a constructed object
void BallAndSocketJointComponents::moveComponentToIndex(uint32 srcIndex, uint32 destIndex) {
const Entity entity = mJointEntities[srcIndex];
// Copy the data of the source component to the destination location
new (mJointEntities + destIndex) Entity(mJointEntities[srcIndex]);
mJoints[destIndex] = mJoints[srcIndex];
new (mLocalAnchorPointBody1 + destIndex) Vector3(mLocalAnchorPointBody1[srcIndex]);
new (mLocalAnchorPointBody2 + destIndex) Vector3(mLocalAnchorPointBody2[srcIndex]);
new (mR1World + destIndex) Vector3(mR1World[srcIndex]);
new (mR2World + destIndex) Vector3(mR2World[srcIndex]);
new (mI1 + destIndex) Matrix3x3(mI1[srcIndex]);
new (mI2 + destIndex) Matrix3x3(mI2[srcIndex]);
new (mBiasVector + destIndex) Vector3(mBiasVector[srcIndex]);
new (mInverseMassMatrix + destIndex) Matrix3x3(mInverseMassMatrix[srcIndex]);
new (mImpulse + destIndex) Vector3(mImpulse[srcIndex]);
mIsConeLimitEnabled[destIndex] = mIsConeLimitEnabled[srcIndex];
mConeLimitImpulse[destIndex] = mConeLimitImpulse[srcIndex];
mConeLimitHalfAngle[destIndex] = mConeLimitHalfAngle[srcIndex];
mInverseMassMatrixConeLimit[destIndex] = mInverseMassMatrixConeLimit[srcIndex];
mBConeLimit[destIndex] = mBConeLimit[srcIndex];
mIsConeLimitViolated[destIndex] = mIsConeLimitViolated[srcIndex];
new (mConeLimitACrossB + destIndex) Vector3(mConeLimitACrossB[srcIndex]);
// Destroy the source component
destroyComponent(srcIndex);
assert(!mMapEntityToComponentIndex.containsKey(entity));
// Update the entity to component index mapping
mMapEntityToComponentIndex.add(Pair<Entity, uint32>(entity, destIndex));
assert(mMapEntityToComponentIndex[mJointEntities[destIndex]] == destIndex);
}
// Swap two components in the array
void BallAndSocketJointComponents::swapComponents(uint32 index1, uint32 index2) {
// Copy component 1 data
Entity jointEntity1(mJointEntities[index1]);
BallAndSocketJoint* joint1 = mJoints[index1];
Vector3 localAnchorPointBody1(mLocalAnchorPointBody1[index1]);
Vector3 localAnchorPointBody2(mLocalAnchorPointBody2[index1]);
Vector3 r1World1(mR1World[index1]);
Vector3 r2World1(mR2World[index1]);
Matrix3x3 i11(mI1[index1]);
Matrix3x3 i21(mI2[index1]);
Vector3 biasVector1(mBiasVector[index1]);
Matrix3x3 inverseMassMatrix1(mInverseMassMatrix[index1]);
Vector3 impulse1(mImpulse[index1]);
bool isConeLimitEnabled1 = mIsConeLimitEnabled[index1];
decimal coneLimitImpulse1 = mConeLimitImpulse[index1];
decimal coneLimitHalfAngle1 = mConeLimitHalfAngle[index1];
decimal inverseMassMatrixConeLimit1 = mInverseMassMatrixConeLimit[index1];
decimal bConeLimit = mBConeLimit[index1];
bool isConeLimitViolated = mIsConeLimitViolated[index1];
Vector3 coneLimitAcrossB(mConeLimitACrossB[index1]);
// Destroy component 1
destroyComponent(index1);
moveComponentToIndex(index2, index1);
// Reconstruct component 1 at component 2 location
new (mJointEntities + index2) Entity(jointEntity1);
mJoints[index2] = joint1;
new (mLocalAnchorPointBody1 + index2) Vector3(localAnchorPointBody1);
new (mLocalAnchorPointBody2 + index2) Vector3(localAnchorPointBody2);
new (mR1World + index2) Vector3(r1World1);
new (mR2World + index2) Vector3(r2World1);
new (mI1 + index2) Matrix3x3(i11);
new (mI2 + index2) Matrix3x3(i21);
new (mBiasVector + index2) Vector3(biasVector1);
new (mInverseMassMatrix + index2) Matrix3x3(inverseMassMatrix1);
new (mImpulse + index2) Vector3(impulse1);
mIsConeLimitEnabled[index2] = isConeLimitEnabled1;
mConeLimitImpulse[index2] = coneLimitImpulse1;
mConeLimitHalfAngle[index2] = coneLimitHalfAngle1;
mInverseMassMatrixConeLimit[index2] = inverseMassMatrixConeLimit1;
mBConeLimit[index2] = bConeLimit;
mIsConeLimitViolated[index2] = isConeLimitViolated;
new (mConeLimitACrossB + index2) Vector3(coneLimitAcrossB);
// Update the entity to component index mapping
mMapEntityToComponentIndex.add(Pair<Entity, uint32>(jointEntity1, index2));
assert(mMapEntityToComponentIndex[mJointEntities[index1]] == index1);
assert(mMapEntityToComponentIndex[mJointEntities[index2]] == index2);
assert(mNbComponents == static_cast<uint32>(mMapEntityToComponentIndex.size()));
}
// Destroy a component at a given index
void BallAndSocketJointComponents::destroyComponent(uint32 index) {
Components::destroyComponent(index);
assert(mMapEntityToComponentIndex[mJointEntities[index]] == index);
mMapEntityToComponentIndex.remove(mJointEntities[index]);
mJointEntities[index].~Entity();
mJoints[index] = nullptr;
mLocalAnchorPointBody1[index].~Vector3();
mLocalAnchorPointBody2[index].~Vector3();
mR1World[index].~Vector3();
mR2World[index].~Vector3();
mI1[index].~Matrix3x3();
mI2[index].~Matrix3x3();
mBiasVector[index].~Vector3();
mInverseMassMatrix[index].~Matrix3x3();
mImpulse[index].~Vector3();
mConeLimitACrossB[index].~Vector3();
}