reactphysics3d/src/collision/shapes/ConeShape.h
2014-09-04 22:32:29 +02:00

185 lines
7.6 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
* Copyright (c) 2010-2013 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef REACTPHYSICS3D_CONE_SHAPE_H
#define REACTPHYSICS3D_CONE_SHAPE_H
// Libraries
#include "CollisionShape.h"
#include "body/CollisionBody.h"
#include "mathematics/mathematics.h"
/// ReactPhysics3D namespace
namespace reactphysics3d {
// Class ConeShape
/**
* This class represents a cone collision shape centered at the
* origin and alligned with the Y axis. The cone is defined
* by its height and by the radius of its base. The center of the
* cone is at the half of the height. The "transform" of the
* corresponding rigid body gives an orientation and a position
* to the cone. This collision shape uses an extra margin distance around
* it for collision detection purpose. The default margin is 4cm (if your
* units are meters, which is recommended). In case, you want to simulate small
* objects (smaller than the margin distance), you might want to reduce the margin
* by specifying your own margin distance using the "margin" parameter in the
* constructor of the cone shape. Otherwise, it is recommended to use the
* default margin distance by not using the "margin" parameter in the constructor.
*/
class ConeShape : public CollisionShape {
private :
// -------------------- Attributes -------------------- //
/// Radius of the base
decimal mRadius;
/// Half height of the cone
decimal mHalfHeight;
/// sine of the semi angle at the apex point
decimal mSinTheta;
// -------------------- Methods -------------------- //
/// Private copy-constructor
ConeShape(const ConeShape& shape);
/// Private assignment operator
ConeShape& operator=(const ConeShape& shape);
/// Return a local support point in a given direction with the object margin
virtual Vector3 getLocalSupportPointWithMargin(const Vector3& direction,
void** cachedCollisionData) const;
/// Return a local support point in a given direction without the object margin
virtual Vector3 getLocalSupportPointWithoutMargin(const Vector3& direction,
void** cachedCollisionData) const;
/// Return true if a point is inside the collision shape
virtual bool testPointInside(const Vector3& localPoint, ProxyShape* proxyShape) const;
/// Raycast method
virtual bool raycast(const Ray& ray, ProxyShape* proxyShape) const;
/// Raycast method with feedback information
virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape,
decimal distance = RAYCAST_INFINITY_DISTANCE) const;
public :
// -------------------- Methods -------------------- //
/// Constructor
ConeShape(decimal mRadius, decimal height, decimal margin = OBJECT_MARGIN);
/// Destructor
virtual ~ConeShape();
/// Allocate and return a copy of the object
virtual ConeShape* clone(void* allocatedMemory) const;
/// Return the radius
decimal getRadius() const;
/// Return the height
decimal getHeight() const;
/// Return the number of bytes used by the collision shape
virtual size_t getSizeInBytes() const;
/// Return the local bounds of the shape in x, y and z directions
virtual void getLocalBounds(Vector3& min, Vector3& max) const;
/// Return the local inertia tensor of the collision shape
virtual void computeLocalInertiaTensor(Matrix3x3& tensor, decimal mass) const;
/// Test equality between two cone shapes
virtual bool isEqualTo(const CollisionShape& otherCollisionShape) const;
};
// Allocate and return a copy of the object
inline ConeShape* ConeShape::clone(void* allocatedMemory) const {
return new (allocatedMemory) ConeShape(*this);
}
// Return the radius
inline decimal ConeShape::getRadius() const {
return mRadius;
}
// Return the height
inline decimal ConeShape::getHeight() const {
return decimal(2.0) * mHalfHeight;
}
// Return the number of bytes used by the collision shape
inline size_t ConeShape::getSizeInBytes() const {
return sizeof(ConeShape);
}
// Return the local bounds of the shape in x, y and z directions
inline void ConeShape::getLocalBounds(Vector3& min, Vector3& max) const {
// Maximum bounds
max.x = mRadius + mMargin;
max.y = mHalfHeight + mMargin;
max.z = max.x;
// Minimum bounds
min.x = -max.x;
min.y = -max.y;
min.z = min.x;
}
// Return the local inertia tensor of the collision shape
inline void ConeShape::computeLocalInertiaTensor(Matrix3x3& tensor, decimal mass) const {
decimal rSquare = mRadius * mRadius;
decimal diagXZ = decimal(0.15) * mass * (rSquare + mHalfHeight);
tensor.setAllValues(diagXZ, 0.0, 0.0,
0.0, decimal(0.3) * mass * rSquare,
0.0, 0.0, 0.0, diagXZ);
}
// Test equality between two cone shapes
inline bool ConeShape::isEqualTo(const CollisionShape& otherCollisionShape) const {
const ConeShape& otherShape = dynamic_cast<const ConeShape&>(otherCollisionShape);
return (mRadius == otherShape.mRadius && mHalfHeight == otherShape.mHalfHeight);
}
// Return true if a point is inside the collision shape
inline bool ConeShape::testPointInside(const Vector3& localPoint, ProxyShape* proxyShape) const {
const decimal radiusHeight = mRadius * (-localPoint.y + mHalfHeight) /
(mHalfHeight * decimal(2.0));
return (localPoint.y < mHalfHeight && localPoint.y > -mHalfHeight) &&
(localPoint.x * localPoint.x + localPoint.z * localPoint.z < radiusHeight *radiusHeight);
}
}
#endif