reactphysics3d/testbed/nanogui/ext/eigen/test/vectorwiseop.cpp

206 lines
6.4 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_NO_STATIC_ASSERT
#include "main.h"
template<typename ArrayType> void vectorwiseop_array(const ArrayType& m)
{
typedef typename ArrayType::Index Index;
typedef typename ArrayType::Scalar Scalar;
typedef Array<Scalar, ArrayType::RowsAtCompileTime, 1> ColVectorType;
typedef Array<Scalar, 1, ArrayType::ColsAtCompileTime> RowVectorType;
Index rows = m.rows();
Index cols = m.cols();
Index r = internal::random<Index>(0, rows-1),
c = internal::random<Index>(0, cols-1);
ArrayType m1 = ArrayType::Random(rows, cols),
m2(rows, cols),
m3(rows, cols);
ColVectorType colvec = ColVectorType::Random(rows);
RowVectorType rowvec = RowVectorType::Random(cols);
// test addition
m2 = m1;
m2.colwise() += colvec;
VERIFY_IS_APPROX(m2, m1.colwise() + colvec);
VERIFY_IS_APPROX(m2.col(c), m1.col(c) + colvec);
VERIFY_RAISES_ASSERT(m2.colwise() += colvec.transpose());
VERIFY_RAISES_ASSERT(m1.colwise() + colvec.transpose());
m2 = m1;
m2.rowwise() += rowvec;
VERIFY_IS_APPROX(m2, m1.rowwise() + rowvec);
VERIFY_IS_APPROX(m2.row(r), m1.row(r) + rowvec);
VERIFY_RAISES_ASSERT(m2.rowwise() += rowvec.transpose());
VERIFY_RAISES_ASSERT(m1.rowwise() + rowvec.transpose());
// test substraction
m2 = m1;
m2.colwise() -= colvec;
VERIFY_IS_APPROX(m2, m1.colwise() - colvec);
VERIFY_IS_APPROX(m2.col(c), m1.col(c) - colvec);
VERIFY_RAISES_ASSERT(m2.colwise() -= colvec.transpose());
VERIFY_RAISES_ASSERT(m1.colwise() - colvec.transpose());
m2 = m1;
m2.rowwise() -= rowvec;
VERIFY_IS_APPROX(m2, m1.rowwise() - rowvec);
VERIFY_IS_APPROX(m2.row(r), m1.row(r) - rowvec);
VERIFY_RAISES_ASSERT(m2.rowwise() -= rowvec.transpose());
VERIFY_RAISES_ASSERT(m1.rowwise() - rowvec.transpose());
// test multiplication
m2 = m1;
m2.colwise() *= colvec;
VERIFY_IS_APPROX(m2, m1.colwise() * colvec);
VERIFY_IS_APPROX(m2.col(c), m1.col(c) * colvec);
VERIFY_RAISES_ASSERT(m2.colwise() *= colvec.transpose());
VERIFY_RAISES_ASSERT(m1.colwise() * colvec.transpose());
m2 = m1;
m2.rowwise() *= rowvec;
VERIFY_IS_APPROX(m2, m1.rowwise() * rowvec);
VERIFY_IS_APPROX(m2.row(r), m1.row(r) * rowvec);
VERIFY_RAISES_ASSERT(m2.rowwise() *= rowvec.transpose());
VERIFY_RAISES_ASSERT(m1.rowwise() * rowvec.transpose());
// test quotient
m2 = m1;
m2.colwise() /= colvec;
VERIFY_IS_APPROX(m2, m1.colwise() / colvec);
VERIFY_IS_APPROX(m2.col(c), m1.col(c) / colvec);
VERIFY_RAISES_ASSERT(m2.colwise() /= colvec.transpose());
VERIFY_RAISES_ASSERT(m1.colwise() / colvec.transpose());
m2 = m1;
m2.rowwise() /= rowvec;
VERIFY_IS_APPROX(m2, m1.rowwise() / rowvec);
VERIFY_IS_APPROX(m2.row(r), m1.row(r) / rowvec);
VERIFY_RAISES_ASSERT(m2.rowwise() /= rowvec.transpose());
VERIFY_RAISES_ASSERT(m1.rowwise() / rowvec.transpose());
m2 = m1;
// yes, there might be an aliasing issue there but ".rowwise() /="
// is suppposed to evaluate " m2.colwise().sum()" into to temporary to avoid
// evaluating the reducions multiple times
if(ArrayType::RowsAtCompileTime>2 || ArrayType::RowsAtCompileTime==Dynamic)
{
m2.rowwise() /= m2.colwise().sum();
VERIFY_IS_APPROX(m2, m1.rowwise() / m1.colwise().sum());
}
}
template<typename MatrixType> void vectorwiseop_matrix(const MatrixType& m)
{
typedef typename MatrixType::Index Index;
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVectorType;
typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealColVectorType;
typedef Matrix<RealScalar, 1, MatrixType::ColsAtCompileTime> RealRowVectorType;
Index rows = m.rows();
Index cols = m.cols();
Index r = internal::random<Index>(0, rows-1),
c = internal::random<Index>(0, cols-1);
MatrixType m1 = MatrixType::Random(rows, cols),
m2(rows, cols),
m3(rows, cols);
ColVectorType colvec = ColVectorType::Random(rows);
RowVectorType rowvec = RowVectorType::Random(cols);
RealColVectorType rcres;
RealRowVectorType rrres;
// test addition
m2 = m1;
m2.colwise() += colvec;
VERIFY_IS_APPROX(m2, m1.colwise() + colvec);
VERIFY_IS_APPROX(m2.col(c), m1.col(c) + colvec);
VERIFY_RAISES_ASSERT(m2.colwise() += colvec.transpose());
VERIFY_RAISES_ASSERT(m1.colwise() + colvec.transpose());
m2 = m1;
m2.rowwise() += rowvec;
VERIFY_IS_APPROX(m2, m1.rowwise() + rowvec);
VERIFY_IS_APPROX(m2.row(r), m1.row(r) + rowvec);
VERIFY_RAISES_ASSERT(m2.rowwise() += rowvec.transpose());
VERIFY_RAISES_ASSERT(m1.rowwise() + rowvec.transpose());
// test substraction
m2 = m1;
m2.colwise() -= colvec;
VERIFY_IS_APPROX(m2, m1.colwise() - colvec);
VERIFY_IS_APPROX(m2.col(c), m1.col(c) - colvec);
VERIFY_RAISES_ASSERT(m2.colwise() -= colvec.transpose());
VERIFY_RAISES_ASSERT(m1.colwise() - colvec.transpose());
m2 = m1;
m2.rowwise() -= rowvec;
VERIFY_IS_APPROX(m2, m1.rowwise() - rowvec);
VERIFY_IS_APPROX(m2.row(r), m1.row(r) - rowvec);
VERIFY_RAISES_ASSERT(m2.rowwise() -= rowvec.transpose());
VERIFY_RAISES_ASSERT(m1.rowwise() - rowvec.transpose());
// test norm
rrres = m1.colwise().norm();
VERIFY_IS_APPROX(rrres(c), m1.col(c).norm());
rcres = m1.rowwise().norm();
VERIFY_IS_APPROX(rcres(r), m1.row(r).norm());
// test normalized
m2 = m1.colwise().normalized();
VERIFY_IS_APPROX(m2.col(c), m1.col(c).normalized());
m2 = m1.rowwise().normalized();
VERIFY_IS_APPROX(m2.row(r), m1.row(r).normalized());
// test normalize
m2 = m1;
m2.colwise().normalize();
VERIFY_IS_APPROX(m2.col(c), m1.col(c).normalized());
m2 = m1;
m2.rowwise().normalize();
VERIFY_IS_APPROX(m2.row(r), m1.row(r).normalized());
}
void test_vectorwiseop()
{
CALL_SUBTEST_1(vectorwiseop_array(Array22cd()));
CALL_SUBTEST_2(vectorwiseop_array(Array<double, 3, 2>()));
CALL_SUBTEST_3(vectorwiseop_array(ArrayXXf(3, 4)));
CALL_SUBTEST_4(vectorwiseop_matrix(Matrix4cf()));
CALL_SUBTEST_5(vectorwiseop_matrix(Matrix<float,4,5>()));
CALL_SUBTEST_6(vectorwiseop_matrix(MatrixXd(7,2)));
}