reactphysics3d/include/reactphysics3d/mathematics/Quaternion.h
2020-06-15 22:11:23 +02:00

420 lines
14 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2020 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef REACTPHYSICS3D_QUATERNION_H
#define REACTPHYSICS3D_QUATERNION_H
// Libraries
#include <reactphysics3d/decimal.h>
#include <reactphysics3d/mathematics/Vector3.h>
/// ReactPhysics3D namespace
namespace reactphysics3d {
// Declarations
class Matrix3x3;
// Class Quaternion
/**
* This class represents a quaternion. We use the notation :
* q = (x*i, y*j, z*k, w) to represent a quaternion.
*/
struct Quaternion {
public :
// -------------------- Attributes -------------------- //
/// Component x
decimal x;
/// Component y
decimal y;
/// Component z
decimal z;
/// Component w
decimal w;
// -------------------- Methods -------------------- //
/// Constructor
Quaternion();
/// Constructor with arguments
Quaternion(decimal newX, decimal newY, decimal newZ, decimal newW);
/// Constructor with the component w and the vector v=(x y z)
Quaternion(decimal newW, const Vector3& v);
/// Constructor with the component w and the vector v=(x y z)
Quaternion(const Vector3& v, decimal newW);
/// Copy-constructor
Quaternion(const Quaternion& quaternion);
/// Create a unit quaternion from a rotation matrix
Quaternion(const Matrix3x3& matrix);
/// Destructor
~Quaternion() = default;
/// Set all the values
void setAllValues(decimal newX, decimal newY, decimal newZ, decimal newW);
/// Set the quaternion to zero
void setToZero();
/// Set to the identity quaternion
void setToIdentity();
/// Return the vector v=(x y z) of the quaternion
Vector3 getVectorV() const;
/// Return the length of the quaternion
decimal length() const;
/// Return the square of the length of the quaternion
decimal lengthSquare() const;
/// Normalize the quaternion
void normalize();
/// Inverse the quaternion
void inverse();
/// Return the unit quaternion
Quaternion getUnit() const;
/// Return the conjugate quaternion
Quaternion getConjugate() const;
/// Return the inverse of the quaternion
Quaternion getInverse() const;
/// Return the orientation matrix corresponding to this quaternion
Matrix3x3 getMatrix() const;
/// Return the identity quaternion
static Quaternion identity();
/// Return a quaternion constructed from Euler angles (in radians)
static Quaternion fromEulerAngles(decimal angleX, decimal angleY, decimal angleZ);
/// Return a quaternion constructed from Euler angles (in radians)
static Quaternion fromEulerAngles(const Vector3& eulerAngles);
/// Dot product between two quaternions
decimal dot(const Quaternion& quaternion) const;
/// Compute the rotation angle (in radians) and the rotation axis
void getRotationAngleAxis(decimal& angle, Vector3& axis) const;
/// Return true if the values are not NAN OR INF
bool isFinite() const;
/// Return true if it is a unit quaternion
bool isUnit() const;
/// Return true if it is a valid quaternion
bool isValid() const;
/// Compute the spherical linear interpolation between two quaternions
static Quaternion slerp(const Quaternion& quaternion1, const Quaternion& quaternion2, decimal t);
/// Overloaded operator for the addition
Quaternion operator+(const Quaternion& quaternion) const;
/// Overloaded operator for the substraction
Quaternion operator-(const Quaternion& quaternion) const;
/// Overloaded operator for addition with assignment
Quaternion& operator+=(const Quaternion& quaternion);
/// Overloaded operator for substraction with assignment
Quaternion& operator-=(const Quaternion& quaternion);
/// Overloaded operator for the multiplication with a constant
Quaternion operator*(decimal nb) const;
/// Overloaded operator for the multiplication
Quaternion operator*(const Quaternion& quaternion) const;
/// Overloaded operator for the multiplication with a vector
Vector3 operator*(const Vector3& point) const;
/// Overloaded operator for assignment
Quaternion& operator=(const Quaternion& quaternion);
/// Overloaded operator for equality condition
bool operator==(const Quaternion& quaternion) const;
/// Return the string representation
std::string to_string() const;
private:
/// Initialize the quaternion using Euler angles
void initWithEulerAngles(decimal angleX, decimal angleY, decimal angleZ);
};
// Constructor of the class
inline Quaternion::Quaternion() : x(0.0), y(0.0), z(0.0), w(0.0) {
}
// Constructor with arguments
inline Quaternion::Quaternion(decimal newX, decimal newY, decimal newZ, decimal newW)
:x(newX), y(newY), z(newZ), w(newW) {
}
// Constructor with the component w and the vector v=(x y z)
inline Quaternion::Quaternion(decimal newW, const Vector3& v) : x(v.x), y(v.y), z(v.z), w(newW) {
}
// Constructor with the component w and the vector v=(x y z)
inline Quaternion::Quaternion(const Vector3& v, decimal newW) : x(v.x), y(v.y), z(v.z), w(newW) {
}
// Set all the values
inline void Quaternion::setAllValues(decimal newX, decimal newY, decimal newZ, decimal newW) {
x = newX;
y = newY;
z = newZ;
w = newW;
}
// Set the quaternion to zero
inline void Quaternion::setToZero() {
x = 0;
y = 0;
z = 0;
w = 0;
}
// Set to the identity quaternion
inline void Quaternion::setToIdentity() {
x = 0;
y = 0;
z = 0;
w = 1;
}
// Return the vector v=(x y z) of the quaternion
inline Vector3 Quaternion::getVectorV() const {
// Return the vector v
return Vector3(x, y, z);
}
// Return the length of the quaternion (inline)
inline decimal Quaternion::length() const {
return std::sqrt(x*x + y*y + z*z + w*w);
}
// Return the square of the length of the quaternion
inline decimal Quaternion::lengthSquare() const {
return x*x + y*y + z*z + w*w;
}
// Normalize the quaternion
inline void Quaternion::normalize() {
decimal l = length();
// Check if the length is not equal to zero
assert (l > MACHINE_EPSILON);
x /= l;
y /= l;
z /= l;
w /= l;
}
// Inverse the quaternion
inline void Quaternion::inverse() {
// Use the conjugate of the current quaternion
x = -x;
y = -y;
z = -z;
}
// Return the unit quaternion
inline Quaternion Quaternion::getUnit() const {
decimal lengthQuaternion = length();
// Check if the length is not equal to zero
assert (lengthQuaternion > MACHINE_EPSILON);
// Compute and return the unit quaternion
return Quaternion(x / lengthQuaternion, y / lengthQuaternion,
z / lengthQuaternion, w / lengthQuaternion);
}
// Return the identity quaternion
inline Quaternion Quaternion::identity() {
return Quaternion(0.0, 0.0, 0.0, 1.0);
}
// Return the conjugate of the quaternion (inline)
inline Quaternion Quaternion::getConjugate() const {
return Quaternion(-x, -y, -z, w);
}
// Return the inverse of the quaternion (inline)
inline Quaternion Quaternion::getInverse() const {
// Return the conjugate quaternion
return Quaternion(-x, -y, -z, w);
}
// Scalar product between two quaternions
inline decimal Quaternion::dot(const Quaternion& quaternion) const {
return (x*quaternion.x + y*quaternion.y + z*quaternion.z + w*quaternion.w);
}
// Return true if the values are not NAN OR INF
inline bool Quaternion::isFinite() const {
return std::isfinite(x) && std::isfinite(y) && std::isfinite(z) && std::isfinite(w);
}
// Return true if it is a unit quaternion
inline bool Quaternion::isUnit() const {
const decimal length = std::sqrt(x*x + y*y + z*z + w*w);
const decimal tolerance = 1e-5f;
return std::abs(length - decimal(1.0)) < tolerance;
}
// Return true if it is a valid quaternion
inline bool Quaternion::isValid() const {
return isFinite() && isUnit();
}
// Overloaded operator for the addition of two quaternions
inline Quaternion Quaternion::operator+(const Quaternion& quaternion) const {
// Return the result quaternion
return Quaternion(x + quaternion.x, y + quaternion.y, z + quaternion.z, w + quaternion.w);
}
// Overloaded operator for the substraction of two quaternions
inline Quaternion Quaternion::operator-(const Quaternion& quaternion) const {
// Return the result of the substraction
return Quaternion(x - quaternion.x, y - quaternion.y, z - quaternion.z, w - quaternion.w);
}
// Overloaded operator for addition with assignment
inline Quaternion& Quaternion::operator+=(const Quaternion& quaternion) {
x += quaternion.x;
y += quaternion.y;
z += quaternion.z;
w += quaternion.w;
return *this;
}
// Overloaded operator for substraction with assignment
inline Quaternion& Quaternion::operator-=(const Quaternion& quaternion) {
x -= quaternion.x;
y -= quaternion.y;
z -= quaternion.z;
w -= quaternion.w;
return *this;
}
// Overloaded operator for the multiplication with a constant
inline Quaternion Quaternion::operator*(decimal nb) const {
return Quaternion(nb * x, nb * y, nb * z, nb * w);
}
// Overloaded operator for the multiplication of two quaternions
inline Quaternion Quaternion::operator*(const Quaternion& quaternion) const {
/* The followin code is equivalent to this
return Quaternion(w * quaternion.w - getVectorV().dot(quaternion.getVectorV()),
w * quaternion.getVectorV() + quaternion.w * getVectorV() +
getVectorV().cross(quaternion.getVectorV()));
*/
return Quaternion(w * quaternion.x + quaternion.w * x + y * quaternion.z - z * quaternion.y,
w * quaternion.y + quaternion.w * y + z * quaternion.x - x * quaternion.z,
w * quaternion.z + quaternion.w * z + x * quaternion.y - y * quaternion.x,
w * quaternion.w - x * quaternion.x - y * quaternion.y - z * quaternion.z);
}
// Overloaded operator for the multiplication with a vector.
/// This methods rotates a point given the rotation of a quaternion.
inline Vector3 Quaternion::operator*(const Vector3& point) const {
/* The following code is equivalent to this
* Quaternion p(point.x, point.y, point.z, 0.0);
* return (((*this) * p) * getConjugate()).getVectorV();
*/
const decimal prodX = w * point.x + y * point.z - z * point.y;
const decimal prodY = w * point.y + z * point.x - x * point.z;
const decimal prodZ = w * point.z + x * point.y - y * point.x;
const decimal prodW = -x * point.x - y * point.y - z * point.z;
return Vector3(w * prodX - prodY * z + prodZ * y - prodW * x,
w * prodY - prodZ * x + prodX * z - prodW * y,
w * prodZ - prodX * y + prodY * x - prodW * z);
}
// Overloaded operator for the assignment
inline Quaternion& Quaternion::operator=(const Quaternion& quaternion) {
// Check for self-assignment
if (this != &quaternion) {
x = quaternion.x;
y = quaternion.y;
z = quaternion.z;
w = quaternion.w;
}
// Return this quaternion
return *this;
}
// Overloaded operator for equality condition
inline bool Quaternion::operator==(const Quaternion& quaternion) const {
return (x == quaternion.x && y == quaternion.y &&
z == quaternion.z && w == quaternion.w);
}
// Get the string representation
inline std::string Quaternion::to_string() const {
return "Quaternion(" + std::to_string(x) + "," + std::to_string(y) + "," + std::to_string(z) + "," +
std::to_string(w) + ")";
}
}
#endif