reactphysics3d/testbed/src/Timer.h
2015-04-22 20:54:17 +02:00

175 lines
5.7 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2015 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef TIMER_H
#define TIMER_H
// Libraries
#include <stdexcept>
#include <iostream>
#include <ctime>
#include <cassert>
#include "configuration.h"
#if defined(WINDOWS_OS) // For Windows platform
#define NOMINMAX // This is used to avoid definition of max() and min() macros
#include <windows.h>
#else // For Mac OS or Linux platform
#include <sys/time.h>
#endif
// Class Timer
/**
* This class will take care of the time in the physics engine. It
* uses functions that depend on the current platform to get the
* current time.
*/
class Timer {
private :
// -------------------- Attributes -------------------- //
/// Last time the timer has been updated
long double mLastUpdateTime;
/// Time difference between the two last timer update() calls
long double mDeltaTime;
/// Used to fix the time step and avoid strange time effects
double mAccumulator;
/// True if the timer is running
bool mIsRunning;
// -------------------- Methods -------------------- //
/// Private copy-constructor
Timer(const Timer& timer);
/// Private assignment operator
Timer& operator=(const Timer& timer);
public :
// -------------------- Methods -------------------- //
/// Constructor
Timer();
/// Destructor
virtual ~Timer();
/// Return the current time of the physics engine
long double getPhysicsTime() const;
/// Start the timer
void start();
/// Stop the timer
void stop();
/// Return true if the timer is running
bool isRunning() const;
/// True if it's possible to take a new step
bool isPossibleToTakeStep(float timeStep) const;
/// Compute the time since the last update() call and add it to the accumulator
void update();
/// Take a new step => update the timer by adding the timeStep value to the current time
void nextStep(float timeStep);
/// Compute the interpolation factor
float computeInterpolationFactor(float timeStep);
/// Return the current time of the system in seconds
static long double getCurrentSystemTime();
};
// Return the current time
inline long double Timer::getPhysicsTime() const {
return mLastUpdateTime;
}
// Return if the timer is running
inline bool Timer::isRunning() const {
return mIsRunning;
}
// Start the timer
inline void Timer::start() {
if (!mIsRunning) {
// Get the current system time
mLastUpdateTime = getCurrentSystemTime();
mAccumulator = 0.0;
mIsRunning = true;
}
}
// Stop the timer
inline void Timer::stop() {
mIsRunning = false;
}
// True if it's possible to take a new step
inline bool Timer::isPossibleToTakeStep(float timeStep) const {
return (mAccumulator >= timeStep);
}
// Take a new step => update the timer by adding the timeStep value to the current time
inline void Timer::nextStep(float timeStep) {
assert(mIsRunning);
// Update the accumulator value
mAccumulator -= timeStep;
}
// Compute the interpolation factor
inline float Timer::computeInterpolationFactor(float timeStep) {
return (float(mAccumulator) / timeStep);
}
// Compute the time since the last update() call and add it to the accumulator
inline void Timer::update() {
// Get the current system time
long double currentTime = getCurrentSystemTime();
// Compute the delta display time between two display frames
mDeltaTime = currentTime - mLastUpdateTime;
// Update the current display time
mLastUpdateTime = currentTime;
// Update the accumulator value
mAccumulator += mDeltaTime;
}
#endif