202 lines
5.4 KiB
C++
202 lines
5.4 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include <sstream>
|
|
|
|
#ifdef EIGEN_TEST_MAX_SIZE
|
|
#undef EIGEN_TEST_MAX_SIZE
|
|
#endif
|
|
|
|
#define EIGEN_TEST_MAX_SIZE 50
|
|
|
|
#ifdef EIGEN_TEST_PART_1
|
|
#include "cholesky.cpp"
|
|
#endif
|
|
|
|
#ifdef EIGEN_TEST_PART_2
|
|
#include "lu.cpp"
|
|
#endif
|
|
|
|
#ifdef EIGEN_TEST_PART_3
|
|
#include "qr.cpp"
|
|
#endif
|
|
|
|
#ifdef EIGEN_TEST_PART_4
|
|
#include "qr_colpivoting.cpp"
|
|
#endif
|
|
|
|
#ifdef EIGEN_TEST_PART_5
|
|
#include "qr_fullpivoting.cpp"
|
|
#endif
|
|
|
|
#ifdef EIGEN_TEST_PART_6
|
|
#include "eigensolver_selfadjoint.cpp"
|
|
#endif
|
|
|
|
#ifdef EIGEN_TEST_PART_7
|
|
#include "eigensolver_generic.cpp"
|
|
#endif
|
|
|
|
#ifdef EIGEN_TEST_PART_8
|
|
#include "eigensolver_generalized_real.cpp"
|
|
#endif
|
|
|
|
#ifdef EIGEN_TEST_PART_9
|
|
#include "jacobisvd.cpp"
|
|
#endif
|
|
|
|
#ifdef EIGEN_TEST_PART_10
|
|
#include "bdcsvd.cpp"
|
|
#endif
|
|
|
|
#include <Eigen/Dense>
|
|
|
|
#undef min
|
|
#undef max
|
|
#undef isnan
|
|
#undef isinf
|
|
#undef isfinite
|
|
|
|
#include <boost/multiprecision/cpp_dec_float.hpp>
|
|
#include <boost/multiprecision/number.hpp>
|
|
#include <boost/math/special_functions.hpp>
|
|
#include <boost/math/complex.hpp>
|
|
|
|
namespace mp = boost::multiprecision;
|
|
typedef mp::number<mp::cpp_dec_float<100>, mp::et_on> Real;
|
|
|
|
namespace Eigen {
|
|
template<> struct NumTraits<Real> : GenericNumTraits<Real> {
|
|
static inline Real dummy_precision() { return 1e-50; }
|
|
};
|
|
|
|
template<typename T1,typename T2,typename T3,typename T4,typename T5>
|
|
struct NumTraits<boost::multiprecision::detail::expression<T1,T2,T3,T4,T5> > : NumTraits<Real> {};
|
|
|
|
template<>
|
|
Real test_precision<Real>() { return 1e-50; }
|
|
|
|
// needed in C++93 mode where number does not support explicit cast.
|
|
namespace internal {
|
|
template<typename NewType>
|
|
struct cast_impl<Real,NewType> {
|
|
static inline NewType run(const Real& x) {
|
|
return x.template convert_to<NewType>();
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct cast_impl<Real,std::complex<Real> > {
|
|
static inline std::complex<Real> run(const Real& x) {
|
|
return std::complex<Real>(x);
|
|
}
|
|
};
|
|
}
|
|
}
|
|
|
|
namespace boost {
|
|
namespace multiprecision {
|
|
// to make ADL works as expected:
|
|
using boost::math::isfinite;
|
|
using boost::math::isnan;
|
|
using boost::math::isinf;
|
|
using boost::math::copysign;
|
|
using boost::math::hypot;
|
|
|
|
// The following is needed for std::complex<Real>:
|
|
Real fabs(const Real& a) { return abs EIGEN_NOT_A_MACRO (a); }
|
|
Real fmax(const Real& a, const Real& b) { using std::max; return max(a,b); }
|
|
|
|
// some specialization for the unit tests:
|
|
inline bool test_isMuchSmallerThan(const Real& a, const Real& b) {
|
|
return internal::isMuchSmallerThan(a, b, test_precision<Real>());
|
|
}
|
|
|
|
inline bool test_isApprox(const Real& a, const Real& b) {
|
|
return internal::isApprox(a, b, test_precision<Real>());
|
|
}
|
|
|
|
inline bool test_isApproxOrLessThan(const Real& a, const Real& b) {
|
|
return internal::isApproxOrLessThan(a, b, test_precision<Real>());
|
|
}
|
|
|
|
Real get_test_precision(const Real&) {
|
|
return test_precision<Real>();
|
|
}
|
|
|
|
Real test_relative_error(const Real &a, const Real &b) {
|
|
using Eigen::numext::abs2;
|
|
return sqrt(abs2<Real>(a-b)/Eigen::numext::mini<Real>(abs2(a),abs2(b)));
|
|
}
|
|
}
|
|
}
|
|
|
|
namespace Eigen {
|
|
|
|
}
|
|
|
|
void test_boostmultiprec()
|
|
{
|
|
typedef Matrix<Real,Dynamic,Dynamic> Mat;
|
|
typedef Matrix<std::complex<Real>,Dynamic,Dynamic> MatC;
|
|
|
|
std::cout << "NumTraits<Real>::epsilon() = " << NumTraits<Real>::epsilon() << std::endl;
|
|
std::cout << "NumTraits<Real>::dummy_precision() = " << NumTraits<Real>::dummy_precision() << std::endl;
|
|
std::cout << "NumTraits<Real>::lowest() = " << NumTraits<Real>::lowest() << std::endl;
|
|
std::cout << "NumTraits<Real>::highest() = " << NumTraits<Real>::highest() << std::endl;
|
|
std::cout << "NumTraits<Real>::digits10() = " << NumTraits<Real>::digits10() << std::endl;
|
|
|
|
// chekc stream output
|
|
{
|
|
Mat A(10,10);
|
|
A.setRandom();
|
|
std::stringstream ss;
|
|
ss << A;
|
|
}
|
|
{
|
|
MatC A(10,10);
|
|
A.setRandom();
|
|
std::stringstream ss;
|
|
ss << A;
|
|
}
|
|
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
int s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE);
|
|
|
|
CALL_SUBTEST_1( cholesky(Mat(s,s)) );
|
|
|
|
CALL_SUBTEST_2( lu_non_invertible<Mat>() );
|
|
CALL_SUBTEST_2( lu_invertible<Mat>() );
|
|
CALL_SUBTEST_2( lu_non_invertible<MatC>() );
|
|
CALL_SUBTEST_2( lu_invertible<MatC>() );
|
|
|
|
CALL_SUBTEST_3( qr(Mat(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
|
|
CALL_SUBTEST_3( qr_invertible<Mat>() );
|
|
|
|
CALL_SUBTEST_4( qr<Mat>() );
|
|
CALL_SUBTEST_4( cod<Mat>() );
|
|
CALL_SUBTEST_4( qr_invertible<Mat>() );
|
|
|
|
CALL_SUBTEST_5( qr<Mat>() );
|
|
CALL_SUBTEST_5( qr_invertible<Mat>() );
|
|
|
|
CALL_SUBTEST_6( selfadjointeigensolver(Mat(s,s)) );
|
|
|
|
CALL_SUBTEST_7( eigensolver(Mat(s,s)) );
|
|
|
|
CALL_SUBTEST_8( generalized_eigensolver_real(Mat(s,s)) );
|
|
|
|
TEST_SET_BUT_UNUSED_VARIABLE(s)
|
|
}
|
|
|
|
CALL_SUBTEST_9(( jacobisvd(Mat(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2))) ));
|
|
CALL_SUBTEST_10(( bdcsvd(Mat(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2))) ));
|
|
}
|
|
|