reactphysics3d/src/collision/narrowphase/GJK/GJKAlgorithm.cpp
2013-04-24 19:24:28 +02:00

330 lines
15 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
* Copyright (c) 2010-2013 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
// Libraries
#include "GJKAlgorithm.h"
#include "Simplex.h"
#include "../../../constraint/ContactPoint.h"
#include "../../../configuration.h"
#include <algorithm>
#include <cmath>
#include <cfloat>
#include <cassert>
// We want to use the ReactPhysics3D namespace
using namespace reactphysics3d;
// Constructor
GJKAlgorithm::GJKAlgorithm(MemoryAllocator& memoryAllocator)
:NarrowPhaseAlgorithm(memoryAllocator), mAlgoEPA(memoryAllocator) {
}
// Destructor
GJKAlgorithm::~GJKAlgorithm() {
}
// Return true and compute a contact info if the two bounding volumes collide.
/// This method implements the Hybrid Technique for computing the penetration depth by
/// running the GJK algorithm on original objects (without margin).
/// If the objects don't intersect, this method returns false. If they intersect
/// only in the margins, the method compute the penetration depth and contact points
/// (of enlarged objects). If the original objects (without margin) intersect, we
/// call the computePenetrationDepthForEnlargedObjects() method that run the GJK
/// algorithm on the enlarged object to obtain a simplex polytope that contains the
/// origin, they we give that simplex polytope to the EPA algorithm which will compute
/// the correct penetration depth and contact points between the enlarged objects.
bool GJKAlgorithm::testCollision(const CollisionShape* collisionShape1,
const Transform& transform1,
const CollisionShape* collisionShape2,
const Transform& transform2,
ContactPointInfo*& contactInfo) {
Vector3 suppA; // Support point of object A
Vector3 suppB; // Support point of object B
Vector3 w; // Support point of Minkowski difference A-B
Vector3 pA; // Closest point of object A
Vector3 pB; // Closest point of object B
decimal vDotw;
decimal prevDistSquare;
// Transform a point from local space of body 2 to local
// space of body 1 (the GJK algorithm is done in local space of body 1)
Transform body2Tobody1 = transform1.inverse() * transform2;
// Matrix that transform a direction from local
// space of body 1 into local space of body 2
Matrix3x3 rotateToBody2 = transform2.getOrientation().getMatrix().getTranspose() *
transform1.getOrientation().getMatrix();
// Initialize the margin (sum of margins of both objects)
decimal margin = collisionShape1->getMargin() + collisionShape2->getMargin();
decimal marginSquare = margin * margin;
assert(margin > 0.0);
// Create a simplex set
Simplex simplex;
// Get the previous point V (last cached separating axis)
Vector3 v = mCurrentOverlappingPair->previousSeparatingAxis;
// Initialize the upper bound for the square distance
decimal distSquare = DECIMAL_LARGEST;
do {
// Compute the support points for original objects (without margins) A and B
suppA = collisionShape1->getLocalSupportPointWithoutMargin(-v);
suppB = body2Tobody1 *
collisionShape2->getLocalSupportPointWithoutMargin(rotateToBody2 * v);
// Compute the support point for the Minkowski difference A-B
w = suppA - suppB;
vDotw = v.dot(w);
// If the enlarge objects (with margins) do not intersect
if (vDotw > 0.0 && vDotw * vDotw > distSquare * marginSquare) {
// Cache the current separating axis for frame coherence
mCurrentOverlappingPair->previousSeparatingAxis = v;
// No intersection, we return false
return false;
}
// If the objects intersect only in the margins
if (simplex.isPointInSimplex(w) || distSquare - vDotw <= distSquare * REL_ERROR_SQUARE) {
// Compute the closet points of both objects (without the margins)
simplex.computeClosestPointsOfAandB(pA, pB);
// Project those two points on the margins to have the closest points of both
// object with the margins
decimal dist = sqrt(distSquare);
assert(dist > 0.0);
pA = (pA - (collisionShape1->getMargin() / dist) * v);
pB = body2Tobody1.inverse() * (pB + (collisionShape2->getMargin() / dist) * v);
// Compute the contact info
Vector3 normal = transform1.getOrientation().getMatrix() * (-v.getUnit());
decimal penetrationDepth = margin - dist;
// Reject the contact if the penetration depth is negative (due too numerical errors)
if (penetrationDepth <= 0.0) return false;
// Create the contact info object
contactInfo = new (mMemoryAllocator.allocate(sizeof(ContactPointInfo))) ContactPointInfo(normal,
penetrationDepth,
pA, pB);
// There is an intersection, therefore we return true
return true;
}
// Add the new support point to the simplex
simplex.addPoint(w, suppA, suppB);
// If the simplex is affinely dependent
if (simplex.isAffinelyDependent()) {
// Compute the closet points of both objects (without the margins)
simplex.computeClosestPointsOfAandB(pA, pB);
// Project those two points on the margins to have the closest points of both
// object with the margins
decimal dist = sqrt(distSquare);
assert(dist > 0.0);
pA = (pA - (collisionShape1->getMargin() / dist) * v);
pB = body2Tobody1.inverse() * (pB + (collisionShape2->getMargin() / dist) * v);
// Compute the contact info
Vector3 normal = transform1.getOrientation().getMatrix() * (-v.getUnit());
decimal penetrationDepth = margin - dist;
// Reject the contact if the penetration depth is negative (due too numerical errors)
if (penetrationDepth <= 0.0) return false;
// Create the contact info object
contactInfo = new (mMemoryAllocator.allocate(sizeof(ContactPointInfo))) ContactPointInfo(normal,
penetrationDepth,
pA, pB);
// There is an intersection, therefore we return true
return true;
}
// Compute the point of the simplex closest to the origin
// If the computation of the closest point fail
if (!simplex.computeClosestPoint(v)) {
// Compute the closet points of both objects (without the margins)
simplex.computeClosestPointsOfAandB(pA, pB);
// Project those two points on the margins to have the closest points of both
// object with the margins
decimal dist = sqrt(distSquare);
assert(dist > 0.0);
pA = (pA - (collisionShape1->getMargin() / dist) * v);
pB = body2Tobody1.inverse() * (pB + (collisionShape2->getMargin() / dist) * v);
// Compute the contact info
Vector3 normal = transform1.getOrientation().getMatrix() * (-v.getUnit());
decimal penetrationDepth = margin - dist;
// Reject the contact if the penetration depth is negative (due too numerical errors)
if (penetrationDepth <= 0.0) return false;
// Create the contact info object
contactInfo = new (mMemoryAllocator.allocate(sizeof(ContactPointInfo))) ContactPointInfo(normal,
penetrationDepth,
pA, pB);
// There is an intersection, therefore we return true
return true;
}
// Store and update the squared distance of the closest point
prevDistSquare = distSquare;
distSquare = v.lengthSquare();
// If the distance to the closest point doesn't improve a lot
if (prevDistSquare - distSquare <= MACHINE_EPSILON * prevDistSquare) {
simplex.backupClosestPointInSimplex(v);
// Get the new squared distance
distSquare = v.lengthSquare();
// Compute the closet points of both objects (without the margins)
simplex.computeClosestPointsOfAandB(pA, pB);
// Project those two points on the margins to have the closest points of both
// object with the margins
decimal dist = sqrt(distSquare);
assert(dist > 0.0);
pA = (pA - (collisionShape1->getMargin() / dist) * v);
pB = body2Tobody1.inverse() * (pB + (collisionShape2->getMargin() / dist) * v);
// Compute the contact info
Vector3 normal = transform1.getOrientation().getMatrix() * (-v.getUnit());
decimal penetrationDepth = margin - dist;
// Reject the contact if the penetration depth is negative (due too numerical errors)
if (penetrationDepth <= 0.0) return false;
// Create the contact info object
contactInfo = new (mMemoryAllocator.allocate(sizeof(ContactPointInfo))) ContactPointInfo(normal,
penetrationDepth,
pA, pB);
// There is an intersection, therefore we return true
return true;
}
} while(!simplex.isFull() && distSquare > MACHINE_EPSILON *
simplex.getMaxLengthSquareOfAPoint());
// The objects (without margins) intersect. Therefore, we run the GJK algorithm
// again but on the enlarged objects to compute a simplex polytope that contains
// the origin. Then, we give that simplex polytope to the EPA algorithm to compute
// the correct penetration depth and contact points between the enlarged objects.
return computePenetrationDepthForEnlargedObjects(collisionShape1, transform1, collisionShape2,
transform2, contactInfo, v);
}
/// This method runs the GJK algorithm on the two enlarged objects (with margin)
/// to compute a simplex polytope that contains the origin. The two objects are
/// assumed to intersect in the original objects (without margin). Therefore such
/// a polytope must exist. Then, we give that polytope to the EPA algorithm to
/// compute the correct penetration depth and contact points of the enlarged objects.
bool GJKAlgorithm::computePenetrationDepthForEnlargedObjects(const CollisionShape* collisionShape1,
const Transform& transform1,
const CollisionShape* collisionShape2,
const Transform& transform2,
ContactPointInfo*& contactInfo,
Vector3& v) {
Simplex simplex;
Vector3 suppA;
Vector3 suppB;
Vector3 w;
decimal vDotw;
decimal distSquare = DECIMAL_LARGEST;
decimal prevDistSquare;
// Transform a point from local space of body 2 to local space
// of body 1 (the GJK algorithm is done in local space of body 1)
Transform body2ToBody1 = transform1.inverse() * transform2;
// Matrix that transform a direction from local space of body 1 into local space of body 2
Matrix3x3 rotateToBody2 = transform2.getOrientation().getMatrix().getTranspose() *
transform1.getOrientation().getMatrix();
do {
// Compute the support points for the enlarged object A and B
suppA = collisionShape1->getLocalSupportPointWithMargin(-v);
suppB = body2ToBody1 * collisionShape2->getLocalSupportPointWithMargin(rotateToBody2 * v);
// Compute the support point for the Minkowski difference A-B
w = suppA - suppB;
vDotw = v.dot(w);
// If the enlarge objects do not intersect
if (vDotw > 0.0) {
// No intersection, we return false
return false;
}
// Add the new support point to the simplex
simplex.addPoint(w, suppA, suppB);
if (simplex.isAffinelyDependent()) {
return false;
}
if (!simplex.computeClosestPoint(v)) {
return false;
}
// Store and update the square distance
prevDistSquare = distSquare;
distSquare = v.lengthSquare();
if (prevDistSquare - distSquare <= MACHINE_EPSILON * prevDistSquare) {
return false;
}
} while(!simplex.isFull() && distSquare > MACHINE_EPSILON *
simplex.getMaxLengthSquareOfAPoint());
// Give the simplex computed with GJK algorithm to the EPA algorithm
// which will compute the correct penetration depth and contact points
// between the two enlarged objects
return mAlgoEPA.computePenetrationDepthAndContactPoints(simplex, collisionShape1,
transform1, collisionShape2, transform2,
v, contactInfo);
}