reactphysics3d/sources/reactphysics3d/engine/ConstraintSolver.cpp

289 lines
11 KiB
C++

/***************************************************************************
* Copyright (C) 2009 Daniel Chappuis *
****************************************************************************
* This file is part of ReactPhysics3D. *
* *
* ReactPhysics3D is free software: you can redistribute it and/or modify *
* it under the terms of the GNU Lesser General Public License as published *
* by the Free Software Foundation, either version 3 of the License, or *
* (at your option) any later version. *
* *
* ReactPhysics3D is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU Lesser General Public License for more details. *
* *
* You should have received a copy of the GNU Lesser General Public License *
* along with ReactPhysics3D. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************/
// Libraries
#include "ConstraintSolver.h"
#include "../mathematics/lcp/LCPProjectedGaussSeidel.h"
#include "../body/RigidBody.h"
using namespace reactphysics3d;
// Constructor
ConstraintSolver::ConstraintSolver(PhysicsWorld* world)
:physicsWorld(world), bodyMapping(0), nbConstraints(0), lcpSolver(new LCPProjectedGaussSeidel(MAX_LCP_ITERATIONS)) {
}
// Destructor
ConstraintSolver::~ConstraintSolver() {
}
// Allocate all the matrices needed to solve the LCP problem
void ConstraintSolver::allocate() {
nbConstraints = 0;
Constraint* constraint;
// For each constraint
std::vector<Constraint*>::iterator it;
for (it = physicsWorld->getConstraintsBeginIterator(); it != physicsWorld->getConstraintsEndIterator(); it++) {
constraint = *it;
// Evaluate the constraint
constraint->evaluate();
// If the constraint is active
if (constraint->isActive()) {
activeConstraints.push_back(constraint);
// Add the two bodies of the constraint in the constraintBodies list
constraintBodies.insert(constraint->getBody1());
constraintBodies.insert(constraint->getBody2());
// Fill in the body number maping
bodyNumberMapping.insert(std::pair<Body*, unsigned int>(constraint->getBody1(), bodyNumberMapping.size()));
bodyNumberMapping.insert(std::pair<Body*, unsigned int>(constraint->getBody2(), bodyNumberMapping.size()));
// Update the size of the jacobian matrix
nbConstraints += (1 + constraint->getNbAuxConstraints());
}
}
assert(nbConstraints > 0);
// Compute the number of bodies that are part of some active constraint
nbBodies = bodyNumberMapping.size();
bodyMapping = new Body**[nbConstraints];
J_sp = new Matrix*[nbConstraints];
B_sp = new Matrix*[2];
B_sp[0] = new Matrix[nbConstraints];
B_sp[1] = new Matrix[nbConstraints];
for (uint i=0; i<nbConstraints; i++) {
bodyMapping[i] = new Body*[2];
J_sp[i] = new Matrix[2];
}
errorValues.changeSize(nbConstraints);
b.changeSize(nbConstraints);
lambda.changeSize(nbConstraints);
lowerBounds.changeSize(nbConstraints);
upperBounds.changeSize(nbConstraints);
Minv_sp = new Matrix[nbBodies];
V1 = new Vector[nbBodies];
Vconstraint = new Vector[nbBodies];
Fext = new Vector[nbBodies];
}
// Fill in all the matrices needed to solve the LCP problem
// Notice that all the active constraints should have been evaluated first
void ConstraintSolver::fillInMatrices() {
// For each active constraint
uint noConstraint = 0;
uint nbAuxConstraints = 0;
for (uint c=0; c<activeConstraints.size(); c++) {
Constraint* constraint = activeConstraints.at(c);
// Fill in the J_sp matrix
J_sp[noConstraint][0].changeSize(1, 6);
J_sp[noConstraint][1].changeSize(1, 6);
J_sp[noConstraint][0] = constraint->getBody1Jacobian();
J_sp[noConstraint][1] = constraint->getBody2Jacobian();
// Fill in the body mapping matrix
bodyMapping[noConstraint][0] = constraint->getBody1();
bodyMapping[noConstraint][1] = constraint->getBody2();
// Fill in the limit vectors for the constraint
lowerBounds.setValue(noConstraint, constraint->getLowerBound());
upperBounds.setValue(noConstraint, constraint->getUpperBound());
// Fill in the error vector
errorValues.setValue(noConstraint, constraint->getErrorValue());
nbAuxConstraints = constraint->getNbAuxConstraints();
// If the current constraint has auxiliary constraints
if (nbAuxConstraints > 0) {
// For each auxiliary constraints
for (uint i=1; i<=nbAuxConstraints; i++) {
// Fill in the J_sp matrix
J_sp[noConstraint+i][0].changeSize(1, 6);
J_sp[noConstraint+i][1].changeSize(1, 6);
J_sp[noConstraint+i][0] = constraint->getAuxJacobian().getSubMatrix(i-1, 0, 1, 6);
J_sp[noConstraint+i][1] = constraint->getAuxJacobian().getSubMatrix(i-1, 6, 1, 6);
// Fill in the body mapping matrix
bodyMapping[noConstraint+i][0] = constraint->getBody1();
bodyMapping[noConstraint+i][1] = constraint->getBody2();
}
// Fill in the limit vectors for the auxilirary constraints
lowerBounds.fillInSubVector(noConstraint+1, constraint->getAuxLowerBounds());
upperBounds.fillInSubVector(noConstraint+1, constraint->getAuxUpperBounds());
}
noConstraint += 1 + nbAuxConstraints;
}
// For each current body that is implied in some constraint
RigidBody* rigidBody;
Body* body;
Vector v(6);
Vector f(6);
uint b=0;
for (std::set<Body*>::iterator it = constraintBodies.begin(); it != constraintBodies.end(); it++, b++) {
body = *it;
uint bodyNumber = bodyNumberMapping.at(body);
// TODO : Use polymorphism and remove this downcasting
rigidBody = dynamic_cast<RigidBody*>(body);
assert(rigidBody != 0);
// Compute the vector V1 with initial velocities values
v.fillInSubVector(0, rigidBody->getCurrentBodyState().getLinearVelocity());
v.fillInSubVector(3, rigidBody->getCurrentBodyState().getAngularVelocity());
V1[bodyNumber].changeSize(6);
V1[bodyNumber] = v;
// Compute the vector Vconstraint with final constraint velocities
Vconstraint[bodyNumber].changeSize(6);
Vconstraint[bodyNumber].initWithValue(0.0);
// Compute the vector with forces and torques values
f.fillInSubVector(0, rigidBody->getCurrentBodyState().getExternalForce());
f.fillInSubVector(3, rigidBody->getCurrentBodyState().getExternalTorque());
Fext[bodyNumber].changeSize(6);
Fext[bodyNumber] = f;
// Compute the inverse sparse mass matrix
Matrix mInv(6,6);
mInv.initWithValue(0.0);
if (rigidBody->getIsMotionEnabled()) {
mInv.fillInSubMatrix(0, 0, rigidBody->getCurrentBodyState().getMassInverse().getValue() * Matrix::identity(3));
mInv.fillInSubMatrix(3, 3, rigidBody->getInertiaTensorInverseWorld());
}
Minv_sp[bodyNumber].changeSize(6, 6);
Minv_sp[bodyNumber] = mInv;
}
}
// Free the memory that was allocated in the allocate() method
void ConstraintSolver::freeMemory() {
activeConstraints.clear();
bodyNumberMapping.clear();
constraintBodies.clear();
// Free the bodyMaping array
for (uint i=0; i<nbConstraints; i++) {
delete[] bodyMapping[i];
delete[] J_sp[i];
}
delete[] bodyMapping;
delete[] J_sp;
delete[] B_sp[0];
delete[] B_sp[1];
delete[] B_sp;
delete[] Minv_sp;
delete[] V1;
delete[] Vconstraint;
delete[] Fext;
}
// Compute the vector b
void ConstraintSolver::computeVectorB(double dt) {
uint indexBody1, indexBody2;
double oneOverDT = 1.0/dt;
b = errorValues * oneOverDT;
for (uint c = 0; c<nbConstraints; c++) {
// Substract 1.0/dt*J*V to the vector b
indexBody1 = bodyNumberMapping[bodyMapping[c][0]];
indexBody2 = bodyNumberMapping[bodyMapping[c][1]];
b.setValue(c, b.getValue(c) - (J_sp[c][0] * V1[indexBody1]).getValue(0,0) * oneOverDT);
b.setValue(c, b.getValue(c) - (J_sp[c][1] * V1[indexBody2]).getValue(0,0) * oneOverDT);
// Substract J*M^-1*F_ext to the vector b
b.setValue(c, b.getValue(c) - ((J_sp[c][0] * Minv_sp[indexBody1]) * Fext[indexBody1]
+ (J_sp[c][1] * Minv_sp[indexBody2])*Fext[indexBody2]).getValue(0,0));
}
}
// Compute the matrix B_sp
void ConstraintSolver::computeMatrixB_sp() {
uint indexBody1, indexBody2;
// For each constraint
for (uint c = 0; c<nbConstraints; c++) {
indexBody1 = bodyNumberMapping[bodyMapping[c][0]];
indexBody2 = bodyNumberMapping[bodyMapping[c][1]];
B_sp[0][c].changeSize(6,1);
B_sp[1][c].changeSize(6,1);
B_sp[0][c] = Minv_sp[indexBody1] * J_sp[c][0].getTranspose();
B_sp[1][c] = Minv_sp[indexBody2] * J_sp[c][1].getTranspose();
}
}
// Compute the vector V_constraint (which corresponds to the constraint part of
// the final V2 vector) according to the formula
// V_constraint = dt * (M^-1 * J^T * lambda)
// Note that we use the vector V to store both V1 and V_constraint.
// Note that M^-1 * J^T = B.
// This method is called after that the LCP solver have computed lambda
void ConstraintSolver::computeVectorVconstraint(double dt) {
uint indexBody1, indexBody2;
// Compute dt * (M^-1 * J^T * lambda
for (uint i=0; i<nbConstraints; i++) {
indexBody1 = bodyNumberMapping[bodyMapping[i][0]];
indexBody2 = bodyNumberMapping[bodyMapping[i][1]];
Vconstraint[indexBody1] = Vconstraint[indexBody1] + (B_sp[0][i] * lambda.getValue(i)).getVector() * dt;
Vconstraint[indexBody2] = Vconstraint[indexBody2] + (B_sp[1][i] * lambda.getValue(i)).getVector() * dt;
}
}
// Solve the current LCP problem
void ConstraintSolver::solve(double dt) {
// Allocate memory for the matrices
allocate();
// Fill-in all the matrices needed to solve the LCP problem
fillInMatrices();
// Compute the vector b
computeVectorB(dt);
// Compute the matrix B
computeMatrixB_sp();
// Solve the LCP problem (computation of lambda)
Vector lambdaInit(nbConstraints);
lambdaInit.initWithValue(0.0);
lcpSolver->setLambdaInit(lambdaInit);
lcpSolver->solve(J_sp, B_sp, nbConstraints, nbBodies, bodyMapping, bodyNumberMapping, b, lowerBounds, upperBounds, lambda);
// Compute the vector Vconstraint
computeVectorVconstraint(dt);
}