reactphysics3d/sources/reactphysics3d/engine/CollisionEngine.cpp

95 lines
4.4 KiB
C++

/***************************************************************************
* Copyright (C) 2009 Daniel Chappuis *
****************************************************************************
* This file is part of ReactPhysics3D. *
* *
* ReactPhysics3D is free software: you can redistribute it and/or modify *
* it under the terms of the GNU Lesser General Public License as published *
* by the Free Software Foundation, either version 3 of the License, or *
* (at your option) any later version. *
* *
* ReactPhysics3D is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU Lesser General Public License for more details. *
* *
* You should have received a copy of the GNU Lesser General Public License *
* along with ReactPhysics3D. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************/
// Libraries
#include "CollisionEngine.h"
#include <cfloat>
// We want to use the ReactPhysics3D namespace
using namespace reactphysics3d;
// Constructor
CollisionEngine::CollisionEngine(CollisionWorld* world, const Time& timeStep)
:DynamicEngine(world, timeStep) {
}
// Destructor
CollisionEngine::~CollisionEngine() {
}
// Update the physics simulation
void CollisionEngine::update() {
CollisionWorld* collisionWorld = dynamic_cast<CollisionWorld*>(world);
assert(collisionWorld != 0);
// While the time accumulator is not empty
while(timer.getAccumulator() >= timer.getTimeStep().getValue()) {
// Remove all old collision contact constraints
collisionWorld->removeAllContactConstraints();
Time timeFirst(0); // First collision time
Time timeLast(DBL_MAX); // Last collision separation time
// Compute the collision detection
if (collisionDetection.computeCollisionDetection(collisionWorld, timer.getTimeStep(), timeFirst, timeLast)) {
// For each body in the dynamic world
for(std::vector<Body*>::const_iterator it = world->getBodyListStartIterator(); it != world->getBodyListEndIterator(); ++it) {
// If the body is a RigidBody and if the rigid body motion is enabled
RigidBody* rigidBody = dynamic_cast<RigidBody*>(*it);
if (rigidBody && rigidBody->getIsMotionEnabled()) {
// Update the state of the rigid body
updateBodyState(rigidBody, timeFirst);
}
// Stop the body (TO DELETE)
rigidBody->setIsMotionEnabled(false); // TODO : DELETE THIS
}
}
else {
// For each body in the dynamic world
for(std::vector<Body*>::const_iterator it = world->getBodyListStartIterator(); it != world->getBodyListEndIterator(); ++it) {
// If the body is a RigidBody and if the rigid body motion is enabled
RigidBody* rigidBody = dynamic_cast<RigidBody*>(*it);
if (rigidBody && rigidBody->getIsMotionEnabled()) {
// Update the state of the rigid body with an entire time step
updateBodyState(rigidBody, timer.getTimeStep());
std::cout << "NO NO NO" << std::endl; // TODO : DELETE THIS
}
}
}
// Update the timer
timer.update();
}
// For each body in the dynamic world
for(std::vector<Body*>::const_iterator it = world->getBodyListStartIterator(); it != world->getBodyListEndIterator(); ++it) {
// If the body is a RigidBody and if the rigid body motion is enabled
RigidBody* rigidBody = dynamic_cast<RigidBody*>(*it);
if (rigidBody && rigidBody->getIsMotionEnabled()) {
// Update the interpolation factor of the rigid body
// This one will be used to compute the interpolated state
rigidBody->setInterpolationFactor(timer.getInterpolationFactor());
}
}
}