reactphysics3d/src/collision/GJK/GJKAlgorithm.cpp
2011-10-18 22:03:05 +00:00

282 lines
13 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
* Copyright (c) 2011 Daniel Chappuis *
*********************************************************************************
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy *
* of this software and associated documentation files (the "Software"), to deal *
* in the Software without restriction, including without limitation the rights *
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell *
* copies of the Software, and to permit persons to whom the Software is *
* furnished to do so, subject to the following conditions: *
* *
* The above copyright notice and this permission notice shall be included in *
* all copies or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR *
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE *
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER *
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, *
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN *
* THE SOFTWARE. *
********************************************************************************/
// Libraries
#include "GJKAlgorithm.h"
#include "Simplex.h"
#include "../../constraint/Contact.h"
#include "../../constants.h"
#include <algorithm>
#include <cmath>
#include <cfloat>
#include <cassert>
// We want to use the ReactPhysics3D namespace
using namespace reactphysics3d;
// Constructor
GJKAlgorithm::GJKAlgorithm(CollisionDetection& collisionDetection)
:NarrowPhaseAlgorithm(collisionDetection) {
}
// Destructor
GJKAlgorithm::~GJKAlgorithm() {
}
// Return true and compute a contact info if the two bounding volume collide.
// This method implements the Hybrid Technique for computing the penetration depth by
// running the GJK algorithm on original objects (without margin).
// If the objects don't intersect, this method returns false. If they intersect
// only in the margins, the method compute the penetration depth and contact points
// (of enlarged objects). If the original objects (without margin) intersect, we
// call the computePenetrationDepthForEnlargedObjects() method that run the GJK
// algorithm on the enlarged object to obtain a simplex polytope that contains the
// origin, they we give that simplex polytope to the EPA algorithm which will compute
// the correct penetration depth and contact points between the enlarged objects.
bool GJKAlgorithm::testCollision(const Shape* shape1, const Transform& transform1,
const Shape* shape2, const Transform& transform2,
ContactInfo*& contactInfo) {
assert(shape1 != shape2);
Vector3 suppA; // Support point of object A
Vector3 suppB; // Support point of object B
Vector3 w; // Support point of Minkowski difference A-B
Vector3 pA; // Closest point of object A
Vector3 pB; // Closest point of object B
double vDotw;
double prevDistSquare;
Body* const body1 = shape1->getBodyPointer();
Body* const body2 = shape2->getBodyPointer();
// Transform a point from body space of shape 2 to body space of shape 1 (the GJK algorithm is done in body space of shape 1)
Transform shape2ToShape1 = transform1.inverse() * transform2;
// Matrix that transform a direction from body space of shape 1 into body space of shape 2
Matrix3x3 rotateToShape2 = transform2.getOrientation().getMatrix().getTranspose() * transform1.getOrientation().getMatrix();
// Initialize the margin (sum of margins of both objects)
double margin = 2 * OBJECT_MARGIN;
double marginSquare = margin * margin;
assert(margin > 0.0);
// Create a simplex set
Simplex simplex;
// Get the previous point V (last cached separating axis)
OverlappingPair* overlappingPair = collisionDetection.getOverlappingPair(body1->getID(), body2->getID());
Vector3 v = (overlappingPair) ? overlappingPair->getCachedSeparatingAxis() : Vector3(1.0, 1.0, 1.0);
// Initialize the upper bound for the square distance
double distSquare = DBL_MAX;
do {
// Compute the support points for original objects (without margins) A and B
suppA = shape1->getLocalSupportPoint(-v);
suppB = shape2ToShape1 * shape2->getLocalSupportPoint(rotateToShape2 * v);
// Compute the support point for the Minkowski difference A-B
w = suppA - suppB;
vDotw = v.dot(w);
// If the enlarge objects (with margins) do not intersect
if (vDotw > 0.0 && vDotw * vDotw > distSquare * marginSquare) {
// No intersection, we return false
return false;
}
// If the objects intersect only in the margins
if (simplex.isPointInSimplex(w) || distSquare - vDotw <= distSquare * REL_ERROR_SQUARE) {
// Compute the closet points of both objects (without the margins)
simplex.computeClosestPointsOfAandB(pA, pB);
// Project those two points on the margins to have the closest points of both
// object with the margins
double dist = sqrt(distSquare);
assert(dist > 0.0);
pA = (pA - (OBJECT_MARGIN / dist) * v);
pB = shape2ToShape1.inverse() * (pB + (OBJECT_MARGIN / dist) * v);
// Compute the contact info
Vector3 normal = transform1.getOrientation().getMatrix() * (-v.getUnit());
double penetrationDepth = margin - dist;
contactInfo = new ContactInfo(body1, body2, normal, penetrationDepth, pA, pB, transform1, transform2);
// There is an intersection, therefore we return true
return true;
}
// Add the new support point to the simplex
simplex.addPoint(w, suppA, suppB);
// If the simplex is affinely dependent
if (simplex.isAffinelyDependent()) {
// Compute the closet points of both objects (without the margins)
simplex.computeClosestPointsOfAandB(pA, pB);
// Project those two points on the margins to have the closest points of both
// object with the margins
double dist = sqrt(distSquare);
assert(dist > 0.0);
pA = (pA - (OBJECT_MARGIN / dist) * v);
pB = shape2ToShape1.inverse() * (pB + (OBJECT_MARGIN / dist) * v);
// Compute the contact info
Vector3 normal = transform1.getOrientation().getMatrix() * (-v.getUnit());
double penetrationDepth = margin - dist;
contactInfo = new ContactInfo(body1, body2, normal, penetrationDepth, pA, pB, transform1, transform2);
// There is an intersection, therefore we return true
return true;
}
// Compute the point of the simplex closest to the origin
// If the computation of the closest point fail
if (!simplex.computeClosestPoint(v)) {
// Compute the closet points of both objects (without the margins)
simplex.computeClosestPointsOfAandB(pA, pB);
// Project those two points on the margins to have the closest points of both
// object with the margins
double dist = sqrt(distSquare);
assert(dist > 0.0);
pA = (pA - (OBJECT_MARGIN / dist) * v);
pB = shape2ToShape1.inverse() * (pB + (OBJECT_MARGIN / dist) * v);
// Compute the contact info
Vector3 normal = transform1.getOrientation().getMatrix() * (-v.getUnit());
double penetrationDepth = margin - dist;
contactInfo = new ContactInfo(body1, body2, normal, penetrationDepth, pA, pB, transform1, transform2);
// There is an intersection, therefore we return true
return true;
}
// Store and update the squared distance of the closest point
prevDistSquare = distSquare;
distSquare = v.lengthSquare();
// If the distance to the closest point doesn't improve a lot
if (prevDistSquare - distSquare <= MACHINE_EPSILON * prevDistSquare) {
simplex.backupClosestPointInSimplex(v);
// Get the new squared distance
distSquare = v.lengthSquare();
// Compute the closet points of both objects (without the margins)
simplex.computeClosestPointsOfAandB(pA, pB);
// Project those two points on the margins to have the closest points of both
// object with the margins
double dist = sqrt(distSquare);
assert(dist > 0.0);
pA = (pA - (OBJECT_MARGIN / dist) * v);
pB = shape2ToShape1.inverse() * (pB + (OBJECT_MARGIN / dist) * v);
// Compute the contact info
Vector3 normal = transform1.getOrientation().getMatrix() * (-v.getUnit());
double penetrationDepth = margin - dist;
contactInfo = new ContactInfo(body1, body2, normal, penetrationDepth, pA, pB, transform1, transform2);
// There is an intersection, therefore we return true
return true;
}
} while(!simplex.isFull() && distSquare > MACHINE_EPSILON * simplex.getMaxLengthSquareOfAPoint());
// The objects (without margins) intersect. Therefore, we run the GJK algorithm again but on the
// enlarged objects to compute a simplex polytope that contains the origin. Then, we give that simplex
// polytope to the EPA algorithm to compute the correct penetration depth and contact points between
// the enlarged objects.
return computePenetrationDepthForEnlargedObjects(shape1, transform1, shape2, transform2, contactInfo, v);
}
// This method runs the GJK algorithm on the two enlarged objects (with margin)
// to compute a simplex polytope that contains the origin. The two objects are
// assumed to intersect in the original objects (without margin). Therefore such
// a polytope must exist. Then, we give that polytope to the EPA algorithm to
// compute the correct penetration depth and contact points of the enlarged objects.
bool GJKAlgorithm::computePenetrationDepthForEnlargedObjects(const Shape* const shape1, const Transform& transform1,
const Shape* const shape2, const Transform& transform2,
ContactInfo*& contactInfo, Vector3& v) {
Simplex simplex;
Vector3 suppA;
Vector3 suppB;
Vector3 w;
double vDotw;
double distSquare = DBL_MAX;
double prevDistSquare;
// Transform a point from body space of shape 2 to body space of shape 1 (the GJK algorithm is done in body space of shape 1)
Transform shape2ToShape1 = transform1.inverse() * transform2;
// Matrix that transform a direction from body space of shape 1 into body space of shape 2
Matrix3x3 rotateToShape2 = transform2.getOrientation().getMatrix().getTranspose() * transform1.getOrientation().getMatrix();
do {
// Compute the support points for the enlarged object A and B
suppA = shape1->getLocalSupportPoint(-v, OBJECT_MARGIN);
suppB = shape2ToShape1 * shape2->getLocalSupportPoint(rotateToShape2 * v, OBJECT_MARGIN);
// Compute the support point for the Minkowski difference A-B
w = suppA - suppB;
vDotw = v.dot(w);
// If the enlarge objects do not intersect
if (vDotw > 0.0) {
// No intersection, we return false
return false;
}
// Add the new support point to the simplex
simplex.addPoint(w, suppA, suppB);
if (simplex.isAffinelyDependent()) {
return false;
}
if (!simplex.computeClosestPoint(v)) {
return false;
}
// Store and update the square distance
prevDistSquare = distSquare;
distSquare = v.lengthSquare();
if (prevDistSquare - distSquare <= MACHINE_EPSILON * prevDistSquare) {
return false;
}
} while(!simplex.isFull() && distSquare > MACHINE_EPSILON * simplex.getMaxLengthSquareOfAPoint());
// Give the simplex computed with GJK algorithm to the EPA algorithm which will compute the correct
// penetration depth and contact points between the two enlarged objects
return algoEPA.computePenetrationDepthAndContactPoints(simplex, shape1, transform1, shape2, transform2, v, contactInfo);
}