reactphysics3d/src/collision/narrowphase/NarrowPhaseInfoBatch.cpp

163 lines
7.4 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2018 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
// Libraries
#include "NarrowPhaseInfoBatch.h"
#include "collision/ContactPointInfo.h"
#include "collision/shapes/TriangleShape.h"
#include "engine/OverlappingPairs.h"
#include <iostream>
using namespace reactphysics3d;
// Constructor
NarrowPhaseInfoBatch::NarrowPhaseInfoBatch(MemoryAllocator& allocator, OverlappingPairs& overlappingPairs)
: mMemoryAllocator(allocator), mOverlappingPairs(overlappingPairs), overlappingPairIds(allocator),
proxyShapeEntities1(allocator), proxyShapeEntities2(allocator), collisionShapes1(allocator), collisionShapes2(allocator),
shape1ToWorldTransforms(allocator), shape2ToWorldTransforms(allocator),
isColliding(allocator), contactPoints(allocator), collisionShapeAllocators(allocator),
lastFrameCollisionInfos(allocator) {
}
// Destructor
NarrowPhaseInfoBatch::~NarrowPhaseInfoBatch() {
clear();
}
// Add shapes to be tested during narrow-phase collision detection into the batch
void NarrowPhaseInfoBatch::addNarrowPhaseInfo(uint64 pairId, Entity proxyShape1, Entity proxyShape2, CollisionShape* shape1, CollisionShape* shape2,
const Transform& shape1Transform, const Transform& shape2Transform,
MemoryAllocator& shapeAllocator) {
overlappingPairIds.add(pairId);
proxyShapeEntities1.add(proxyShape1);
proxyShapeEntities2.add(proxyShape2);
collisionShapes1.add(shape1);
collisionShapes2.add(shape2);
shape1ToWorldTransforms.add(shape1Transform);
shape2ToWorldTransforms.add(shape2Transform);
collisionShapeAllocators.add(&shapeAllocator);
contactPoints.add(List<ContactPointInfo*>(mMemoryAllocator));
isColliding.add(false);
// Add a collision info for the two collision shapes into the overlapping pair (if not present yet)
LastFrameCollisionInfo* lastFrameInfo = mOverlappingPairs.addLastFrameInfoIfNecessary(pairId, shape1->getId(), shape2->getId());
lastFrameCollisionInfos.add(lastFrameInfo);
}
// Add a new contact point
void NarrowPhaseInfoBatch::addContactPoint(uint index, const Vector3& contactNormal, decimal penDepth,
const Vector3& localPt1, const Vector3& localPt2) {
assert(penDepth > decimal(0.0));
// Get the memory allocator
MemoryAllocator& allocator = mOverlappingPairs.getTemporaryAllocator();
// Create the contact point info
ContactPointInfo* contactPointInfo = new (allocator.allocate(sizeof(ContactPointInfo)))
ContactPointInfo(contactNormal, penDepth, localPt1, localPt2);
// Add it into the list of contact points
contactPoints[index].add(contactPointInfo);
}
// Reset the remaining contact points
void NarrowPhaseInfoBatch::resetContactPoints(uint index) {
// Get the memory allocator
MemoryAllocator& allocator = mOverlappingPairs.getTemporaryAllocator();
// For each remaining contact point info
for (uint i=0; i < contactPoints[index].size(); i++) {
ContactPointInfo* contactPoint = contactPoints[index][i];
// Call the destructor
contactPoint->~ContactPointInfo();
// Delete the current element
allocator.release(contactPoint, sizeof(ContactPointInfo));
}
contactPoints[index].clear();
}
// Initialize the containers using cached capacity
void NarrowPhaseInfoBatch::reserveMemory() {
overlappingPairIds.reserve(mCachedCapacity);
proxyShapeEntities1.reserve(mCachedCapacity);
proxyShapeEntities2.reserve(mCachedCapacity);
collisionShapes1.reserve(mCachedCapacity);
collisionShapes2.reserve(mCachedCapacity);
shape1ToWorldTransforms.reserve(mCachedCapacity);
shape2ToWorldTransforms.reserve(mCachedCapacity);
collisionShapeAllocators.reserve(mCachedCapacity);
lastFrameCollisionInfos.reserve(mCachedCapacity);
isColliding.reserve(mCachedCapacity);
contactPoints.reserve(mCachedCapacity);
}
// Clear all the objects in the batch
void NarrowPhaseInfoBatch::clear() {
for (uint i=0; i < overlappingPairIds.size(); i++) {
assert(contactPoints[i].size() == 0);
// Release the memory of the TriangleShape (this memory was allocated in the
// MiddlePhaseTriangleCallback::testTriangle() method)
if (collisionShapes1.size() > 0 && collisionShapes1[i]->getName() == CollisionShapeName::TRIANGLE) {
collisionShapes1[i]->~CollisionShape();
collisionShapeAllocators[i]->release(collisionShapes1[i], sizeof(TriangleShape));
}
if (collisionShapes2.size() > 0 && collisionShapes2[i]->getName() == CollisionShapeName::TRIANGLE) {
collisionShapes2[i]->~CollisionShape();
collisionShapeAllocators[i]->release(collisionShapes2[i], sizeof(TriangleShape));
}
}
// Note that we clear the following containers and we release their allocated memory. Therefore,
// if the memory allocator is a single frame allocator, the memory is deallocated and will be
// allocated in the next frame at a possibly different location in memory (remember that the
// location of the allocated memory of a single frame allocator might change between two frames)
mCachedCapacity = overlappingPairIds.size();
overlappingPairIds.clear(true);
proxyShapeEntities1.clear(true);
proxyShapeEntities2.clear(true);
collisionShapes1.clear(true);
collisionShapes2.clear(true);
shape1ToWorldTransforms.clear(true);
shape2ToWorldTransforms.clear(true);
collisionShapeAllocators.clear(true);
lastFrameCollisionInfos.clear(true);
isColliding.clear(true);
contactPoints.clear(true);
}