reactphysics3d/src/collision/shapes/TriangleShape.h
2017-12-04 22:14:52 +01:00

329 lines
13 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2016 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef REACTPHYSICS3D_TRIANGLE_SHAPE_H
#define REACTPHYSICS3D_TRIANGLE_SHAPE_H
// Libraries
#include "mathematics/mathematics.h"
#include "ConvexPolyhedronShape.h"
/// ReactPhysics3D namespace
namespace reactphysics3d {
/// Raycast test side for the triangle
enum class TriangleRaycastSide {
/// Raycast against front triangle
FRONT,
/// Raycast against back triangle
BACK,
/// Raycast against front and back triangle
FRONT_AND_BACK
};
// Class TriangleShape
/**
* This class represents a triangle collision shape that is centered
* at the origin and defined three points. A user cannot instanciate
* an object of this class. This class is for internal use only. Instances
* of this class are created when the user creates an HeightFieldShape and
* a ConcaveMeshShape
*/
class TriangleShape : public ConvexPolyhedronShape {
protected:
// -------------------- Attribute -------------------- //
/// Three points of the triangle
Vector3 mPoints[3];
/// Normal of the triangle
Vector3 mNormal;
/// Three vertices normals for smooth collision with triangle mesh
Vector3 mVerticesNormals[3];
/// Raycast test type for the triangle (front, back, front-back)
TriangleRaycastSide mRaycastTestType;
/// Faces information for the two faces of the triangle
HalfEdgeStructure::Face mFaces[2];
/// Edges information for the six edges of the triangle
HalfEdgeStructure::Edge mEdges[6];
// -------------------- Methods -------------------- //
/// Return a local support point in a given direction without the object margin
virtual Vector3 getLocalSupportPointWithoutMargin(const Vector3& direction) const override;
/// Get a smooth contact normal for collision for a triangle of the mesh
Vector3 computeSmoothLocalContactNormalForTriangle(const Vector3& localContactPoint) const;
/// Return true if a point is inside the collision shape
virtual bool testPointInside(const Vector3& localPoint, ProxyShape* proxyShape) const override;
/// Raycast method with feedback information
virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const override;
/// Return the number of bytes used by the collision shape
virtual size_t getSizeInBytes() const override;
/// Generate the id of the shape (used for temporal coherence)
void generateId();
// -------------------- Methods -------------------- //
/// This method implements the technique described in Game Physics Pearl book
void computeSmoothMeshContact(Vector3 localContactPointTriangle, const Transform& triangleShapeToWorldTransform,
const Transform& worldToOtherShapeTransform, decimal penetrationDepth, bool isTriangleShape1,
Vector3& outNewLocalContactPointOtherShape, Vector3& outSmoothWorldContactTriangleNormal) const;
public:
// -------------------- Methods -------------------- //
/// Constructor
TriangleShape(const Vector3* vertices, const Vector3* verticesNormals, uint shapeId);
/// Destructor
virtual ~TriangleShape() override = default;
/// Deleted copy-constructor
TriangleShape(const TriangleShape& shape) = delete;
/// Deleted assignment operator
TriangleShape& operator=(const TriangleShape& shape) = delete;
/// Return the local bounds of the shape in x, y and z directions.
virtual void getLocalBounds(Vector3& min, Vector3& max) const override;
/// Set the local scaling vector of the collision shape
virtual void setLocalScaling(const Vector3& scaling) override;
/// Return the local inertia tensor of the collision shape
virtual void computeLocalInertiaTensor(Matrix3x3& tensor, decimal mass) const override;
/// Update the AABB of a body using its collision shape
virtual void computeAABB(AABB& aabb, const Transform& transform) const override;
/// Return the raycast test type (front, back, front-back)
TriangleRaycastSide getRaycastTestType() const;
// Set the raycast test type (front, back, front-back)
void setRaycastTestType(TriangleRaycastSide testType);
/// Return the number of faces of the polyhedron
virtual uint getNbFaces() const override;
/// Return a given face of the polyhedron
virtual const HalfEdgeStructure::Face& getFace(uint faceIndex) const override;
/// Return the number of vertices of the polyhedron
virtual uint getNbVertices() const override;
/// Return a given vertex of the polyhedron
virtual HalfEdgeStructure::Vertex getVertex(uint vertexIndex) const override;
/// Return the position of a given vertex
virtual Vector3 getVertexPosition(uint vertexIndex) const override;
/// Return the normal vector of a given face of the polyhedron
virtual Vector3 getFaceNormal(uint faceIndex) const override;
/// Return the number of half-edges of the polyhedron
virtual uint getNbHalfEdges() const override;
/// Return a given half-edge of the polyhedron
virtual const HalfEdgeStructure::Edge& getHalfEdge(uint edgeIndex) const override;
/// Return the centroid of the polyhedron
virtual Vector3 getCentroid() const override;
/// This method compute the smooth mesh contact with a triangle in case one of the two collision shapes is a triangle. The idea in this case is to use a smooth vertex normal of the triangle mesh
static void computeSmoothTriangleMeshContact(const CollisionShape* shape1, const CollisionShape* shape2,
Vector3& localContactPointShape1, Vector3& localContactPointShape2,
const Transform& shape1ToWorld, const Transform& shape2ToWorld,
decimal penetrationDepth, Vector3& outSmoothVertexNormal);
// ---------- Friendship ---------- //
friend class ConcaveMeshRaycastCallback;
friend class TriangleOverlapCallback;
friend class MiddlePhaseTriangleCallback;
};
// Return the number of bytes used by the collision shape
inline size_t TriangleShape::getSizeInBytes() const {
return sizeof(TriangleShape);
}
// Return a local support point in a given direction without the object margin
inline Vector3 TriangleShape::getLocalSupportPointWithoutMargin(const Vector3& direction) const {
Vector3 dotProducts(direction.dot(mPoints[0]), direction.dot(mPoints[1]), direction.dot(mPoints[2]));
return mPoints[dotProducts.getMaxAxis()];
}
// Return the local bounds of the shape in x, y and z directions.
// This method is used to compute the AABB of the box
/**
* @param min The minimum bounds of the shape in local-space coordinates
* @param max The maximum bounds of the shape in local-space coordinates
*/
inline void TriangleShape::getLocalBounds(Vector3& min, Vector3& max) const {
const Vector3 xAxis(mPoints[0].x, mPoints[1].x, mPoints[2].x);
const Vector3 yAxis(mPoints[0].y, mPoints[1].y, mPoints[2].y);
const Vector3 zAxis(mPoints[0].z, mPoints[1].z, mPoints[2].z);
min.setAllValues(xAxis.getMinValue(), yAxis.getMinValue(), zAxis.getMinValue());
max.setAllValues(xAxis.getMaxValue(), yAxis.getMaxValue(), zAxis.getMaxValue());
min -= Vector3(mMargin, mMargin, mMargin);
max += Vector3(mMargin, mMargin, mMargin);
}
// Set the local scaling vector of the collision shape
inline void TriangleShape::setLocalScaling(const Vector3& scaling) {
mPoints[0] = (mPoints[0] / mScaling) * scaling;
mPoints[1] = (mPoints[1] / mScaling) * scaling;
mPoints[2] = (mPoints[2] / mScaling) * scaling;
CollisionShape::setLocalScaling(scaling);
}
// Return the local inertia tensor of the triangle shape
/**
* @param[out] tensor The 3x3 inertia tensor matrix of the shape in local-space
* coordinates
* @param mass Mass to use to compute the inertia tensor of the collision shape
*/
inline void TriangleShape::computeLocalInertiaTensor(Matrix3x3& tensor, decimal mass) const {
tensor.setToZero();
}
// Update the AABB of a body using its collision shape
/**
* @param[out] aabb The axis-aligned bounding box (AABB) of the collision shape
* computed in world-space coordinates
* @param transform Transform used to compute the AABB of the collision shape
*/
inline void TriangleShape::computeAABB(AABB& aabb, const Transform& transform) const {
const Vector3 worldPoint1 = transform * mPoints[0];
const Vector3 worldPoint2 = transform * mPoints[1];
const Vector3 worldPoint3 = transform * mPoints[2];
const Vector3 xAxis(worldPoint1.x, worldPoint2.x, worldPoint3.x);
const Vector3 yAxis(worldPoint1.y, worldPoint2.y, worldPoint3.y);
const Vector3 zAxis(worldPoint1.z, worldPoint2.z, worldPoint3.z);
aabb.setMin(Vector3(xAxis.getMinValue(), yAxis.getMinValue(), zAxis.getMinValue()));
aabb.setMax(Vector3(xAxis.getMaxValue(), yAxis.getMaxValue(), zAxis.getMaxValue()));
}
// Return true if a point is inside the collision shape
inline bool TriangleShape::testPointInside(const Vector3& localPoint, ProxyShape* proxyShape) const {
return false;
}
// Return the number of faces of the polyhedron
inline uint TriangleShape::getNbFaces() const {
return 2;
}
// Return a given face of the polyhedron
inline const HalfEdgeStructure::Face& TriangleShape::getFace(uint faceIndex) const {
assert(faceIndex < 2);
return mFaces[faceIndex];
}
// Return the number of vertices of the polyhedron
inline uint TriangleShape::getNbVertices() const {
return 3;
}
// Return a given vertex of the polyhedron
inline HalfEdgeStructure::Vertex TriangleShape::getVertex(uint vertexIndex) const {
assert(vertexIndex < 3);
HalfEdgeStructure::Vertex vertex(vertexIndex);
switch (vertexIndex) {
case 0: vertex.edgeIndex = 0; break;
case 1: vertex.edgeIndex = 2; break;
case 2: vertex.edgeIndex = 4; break;
}
return vertex;
}
// Return a given half-edge of the polyhedron
inline const HalfEdgeStructure::Edge& TriangleShape::getHalfEdge(uint edgeIndex) const {
assert(edgeIndex < getNbHalfEdges());
return mEdges[edgeIndex];
}
// Return the position of a given vertex
inline Vector3 TriangleShape::getVertexPosition(uint vertexIndex) const {
assert(vertexIndex < 3);
return mPoints[vertexIndex];
}
// Return the normal vector of a given face of the polyhedron
inline Vector3 TriangleShape::getFaceNormal(uint faceIndex) const {
assert(faceIndex < 2);
return faceIndex == 0 ? mNormal : -mNormal;
}
// Return the centroid of the box
inline Vector3 TriangleShape::getCentroid() const {
return (mPoints[0] + mPoints[1] + mPoints[2]) / decimal(3.0);
}
// Return the number of half-edges of the polyhedron
inline uint TriangleShape::getNbHalfEdges() const {
return 6;
}
// Return the raycast test type (front, back, front-back)
inline TriangleRaycastSide TriangleShape::getRaycastTestType() const {
return mRaycastTestType;
}
// Set the raycast test type (front, back, front-back)
/**
* @param testType Raycast test type for the triangle (front, back, front-back)
*/
inline void TriangleShape::setRaycastTestType(TriangleRaycastSide testType) {
mRaycastTestType = testType;
}
}
#endif