reactphysics3d/testbed/common/ConcaveMesh.cpp
2015-10-26 18:15:56 +01:00

346 lines
14 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2015 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
// Libraries
#include "ConcaveMesh.h"
// Constructor
ConcaveMesh::ConcaveMesh(const openglframework::Vector3 &position,
reactphysics3d::CollisionWorld* world,
const std::string& meshFolderPath)
: openglframework::Mesh(), mVBOVertices(GL_ARRAY_BUFFER),
mVBONormals(GL_ARRAY_BUFFER), mVBOTextureCoords(GL_ARRAY_BUFFER),
mVBOIndices(GL_ELEMENT_ARRAY_BUFFER) {
// Load the mesh from a file
openglframework::MeshReaderWriter::loadMeshFromFile(meshFolderPath + "concavemesh.obj", *this);
// Calculate the normals of the mesh
calculateNormals();
// Initialize the position where the sphere will be rendered
translateWorld(position);
// Convert the vertices array to the rp3d::decimal type
/*rp3d::decimal* vertices = new rp3d::decimal[3 * mVertices.size()];
for (int i=0; i < mVertices.size(); i++) {
vertices[3 * i] = static_cast<rp3d::decimal>(mVertices[i].x);
vertices[3 * i + 1] = static_cast<rp3d::decimal>(mVertices[i].y);
vertices[3 * i + 2] = static_cast<rp3d::decimal>(mVertices[i].z);
}
*/
// For each subpart of the mesh
for (int i=0; i<getNbParts(); i++) {
// Vertex and Indices array for the triangle mesh (data in shared and not copied)
rp3d::TriangleVertexArray* vertexArray =
new rp3d::TriangleVertexArray(getNbVertices(), &(mVertices[0]), sizeof(openglframework::Vector3),
getNbFaces(i), &(mIndices[i][0]), sizeof(int),
rp3d::TriangleVertexArray::VERTEX_FLOAT_TYPE,
rp3d::TriangleVertexArray::INDEX_INTEGER_TYPE);
// Add the triangle vertex array of the subpart to the triangle mesh
mPhysicsTriangleMesh.addSubpart(vertexArray);
}
// Create the collision shape for the rigid body (convex mesh shape) and
// do not forget to delete it at the end
mCollisionShape = new rp3d::ConcaveMeshShape(&mPhysicsTriangleMesh);
//delete[] vertices;
/*
// Add the edges information of the mesh into the convex mesh collision shape.
// This is optional but it really speed up the convex mesh collision detection at the
// cost of some additional memory to store the edges inside the collision shape.
for (unsigned int i=0; i<getNbFaces(); i++) { // For each triangle face of the mesh
// Get the three vertex IDs of the vertices of the face
unsigned int v1 = getVertexIndexInFace(i, 0);
unsigned int v2 = getVertexIndexInFace(i, 1);
unsigned int v3 = getVertexIndexInFace(i, 2);
// Add the three edges into the collision shape
mCollisionShape->addEdge(v1, v2);
mCollisionShape->addEdge(v1, v3);
mCollisionShape->addEdge(v2, v3);
}
mCollisionShape->setIsEdgesInformationUsed(true);// Enable the fast collision detection with edges
*/
// Initial position and orientation of the rigid body
rp3d::Vector3 initPosition(position.x, position.y, position.z);
rp3d::Quaternion initOrientation = rp3d::Quaternion::identity();
rp3d::Transform transform(initPosition, initOrientation);
mPreviousTransform = transform;
// Create a rigid body corresponding to the sphere in the dynamics world
mBody = world->createCollisionBody(transform);
// Add a collision shape to the body and specify the mass of the collision shape
mBody->addCollisionShape(mCollisionShape, rp3d::Transform::identity());
// Create the VBOs and VAO
createVBOAndVAO();
}
// Constructor
ConcaveMesh::ConcaveMesh(const openglframework::Vector3 &position, float mass,
reactphysics3d::DynamicsWorld* dynamicsWorld,
const std::string& meshFolderPath)
: openglframework::Mesh(), mVBOVertices(GL_ARRAY_BUFFER),
mVBONormals(GL_ARRAY_BUFFER), mVBOTextureCoords(GL_ARRAY_BUFFER),
mVBOIndices(GL_ELEMENT_ARRAY_BUFFER) {
// Load the mesh from a file
openglframework::MeshReaderWriter::loadMeshFromFile(meshFolderPath + "concavemesh.obj", *this);
// Calculate the normals of the mesh
calculateNormals();
// Initialize the position where the sphere will be rendered
translateWorld(position);
/*
// Convert the vertices array to the rp3d::decimal type
rp3d::decimal* vertices = new rp3d::decimal[3 * mVertices.size()];
for (int i=0; i < mVertices.size(); i++) {
vertices[3 * i] = static_cast<rp3d::decimal>(mVertices[i].x);
vertices[3 * i + 1] = static_cast<rp3d::decimal>(mVertices[i].y);
vertices[3 * i + 2] = static_cast<rp3d::decimal>(mVertices[i].z);
}
*/
// For each subpart of the mesh
for (int i=0; i<getNbParts(); i++) {
// Vertex and Indices array for the triangle mesh (data in shared and not copied)
rp3d::TriangleVertexArray* vertexArray =
new rp3d::TriangleVertexArray(getNbVertices(), &(mVertices[0]), sizeof(openglframework::Vector3),
getNbFaces(i), &(mIndices[i][0]), sizeof(int),
rp3d::TriangleVertexArray::VERTEX_FLOAT_TYPE,
rp3d::TriangleVertexArray::INDEX_INTEGER_TYPE);
// Add the triangle vertex array of the subpart to the triangle mesh
mPhysicsTriangleMesh.addSubpart(vertexArray);
}
// Create the collision shape for the rigid body (convex mesh shape) and
// do not forget to delete it at the end
mCollisionShape = new rp3d::ConcaveMeshShape(&mPhysicsTriangleMesh);
//delete[] vertices;
/*
// Add the edges information of the mesh into the convex mesh collision shape.
// This is optional but it really speed up the convex mesh collision detection at the
// cost of some additional memory to store the edges inside the collision shape.
for (unsigned int i=0; i<getNbFaces(); i++) { // For each triangle face of the mesh
// Get the three vertex IDs of the vertices of the face
unsigned int v1 = getVertexIndexInFace(i, 0);
unsigned int v2 = getVertexIndexInFace(i, 1);
unsigned int v3 = getVertexIndexInFace(i, 2);
// Add the three edges into the collision shape
mCollisionShape->addEdge(v1, v2);
mCollisionShape->addEdge(v1, v3);
mCollisionShape->addEdge(v2, v3);
}
mCollisionShape->setIsEdgesInformationUsed(true);// Enable the fast collision detection with edges
*/
// Initial position and orientation of the rigid body
rp3d::Vector3 initPosition(position.x, position.y, position.z);
rp3d::Quaternion initOrientation = rp3d::Quaternion::identity();
rp3d::Transform transform(initPosition, initOrientation);
// Create a rigid body corresponding to the sphere in the dynamics world
rp3d::RigidBody* body = dynamicsWorld->createRigidBody(transform);
// Add a collision shape to the body and specify the mass of the collision shape
body->addCollisionShape(mCollisionShape, rp3d::Transform::identity(), mass);
mBody = body;
// Create the VBOs and VAO
createVBOAndVAO();
}
// Destructor
ConcaveMesh::~ConcaveMesh() {
// Destroy the triangle mesh data for the physics engine
for (int i=0; i<mPhysicsTriangleMesh.getNbSubparts(); i++) {
delete mPhysicsTriangleMesh.getSubpart(i);
}
// Destroy the mesh
destroy();
// Destroy the VBOs and VAO
mVBOIndices.destroy();
mVBOVertices.destroy();
mVBONormals.destroy();
mVBOTextureCoords.destroy();
mVAO.destroy();
delete mCollisionShape;
}
// Render the sphere at the correct position and with the correct orientation
void ConcaveMesh::render(openglframework::Shader& shader,
const openglframework::Matrix4& worldToCameraMatrix) {
// Bind the shader
shader.bind();
// Set the model to camera matrix
shader.setMatrix4x4Uniform("localToWorldMatrix", mTransformMatrix);
shader.setMatrix4x4Uniform("worldToCameraMatrix", worldToCameraMatrix);
// Set the normal matrix (inverse transpose of the 3x3 upper-left sub matrix of the
// model-view matrix)
const openglframework::Matrix4 localToCameraMatrix = worldToCameraMatrix * mTransformMatrix;
const openglframework::Matrix3 normalMatrix =
localToCameraMatrix.getUpperLeft3x3Matrix().getInverse().getTranspose();
shader.setMatrix3x3Uniform("normalMatrix", normalMatrix, false);
// Set the vertex color
openglframework::Vector4 color(mColor.r, mColor.g, mColor.b, mColor.a);
shader.setVector4Uniform("vertexColor", color, false);
// Bind the VAO
mVAO.bind();
mVBOVertices.bind();
// Get the location of shader attribute variables
GLint vertexPositionLoc = shader.getAttribLocation("vertexPosition");
GLint vertexNormalLoc = shader.getAttribLocation("vertexNormal", false);
glEnableVertexAttribArray(vertexPositionLoc);
glVertexAttribPointer(vertexPositionLoc, 3, GL_FLOAT, GL_FALSE, 0, (char*)NULL);
mVBONormals.bind();
if (vertexNormalLoc != -1) glVertexAttribPointer(vertexNormalLoc, 3, GL_FLOAT, GL_FALSE, 0, (char*)NULL);
if (vertexNormalLoc != -1) glEnableVertexAttribArray(vertexNormalLoc);
// For each part of the mesh
for (unsigned int i=0; i<getNbParts(); i++) {
glDrawElements(GL_TRIANGLES, getNbFaces(i) * 3, GL_UNSIGNED_INT, (char*)NULL);
}
glDisableVertexAttribArray(vertexPositionLoc);
if (vertexNormalLoc != -1) glDisableVertexAttribArray(vertexNormalLoc);
mVBONormals.unbind();
mVBOVertices.unbind();
// Unbind the VAO
mVAO.unbind();
// Unbind the shader
shader.unbind();
}
// Create the Vertex Buffer Objects used to render with OpenGL.
/// We create two VBOs (one for vertices and one for indices)
void ConcaveMesh::createVBOAndVAO() {
// Create the VBO for the vertices data
mVBOVertices.create();
mVBOVertices.bind();
size_t sizeVertices = mVertices.size() * sizeof(openglframework::Vector3);
mVBOVertices.copyDataIntoVBO(sizeVertices, getVerticesPointer(), GL_STATIC_DRAW);
mVBOVertices.unbind();
// Create the VBO for the normals data
mVBONormals.create();
mVBONormals.bind();
size_t sizeNormals = mNormals.size() * sizeof(openglframework::Vector3);
mVBONormals.copyDataIntoVBO(sizeNormals, getNormalsPointer(), GL_STATIC_DRAW);
mVBONormals.unbind();
if (hasTexture()) {
// Create the VBO for the texture co data
mVBOTextureCoords.create();
mVBOTextureCoords.bind();
size_t sizeTextureCoords = mUVs.size() * sizeof(openglframework::Vector2);
mVBOTextureCoords.copyDataIntoVBO(sizeTextureCoords, getUVTextureCoordinatesPointer(), GL_STATIC_DRAW);
mVBOTextureCoords.unbind();
}
// Create th VBO for the indices data
mVBOIndices.create();
mVBOIndices.bind();
size_t sizeIndices = mIndices[0].size() * sizeof(unsigned int);
mVBOIndices.copyDataIntoVBO(sizeIndices, getIndicesPointer(), GL_STATIC_DRAW);
mVBOIndices.unbind();
// Create the VAO for both VBOs
mVAO.create();
mVAO.bind();
// Bind the VBO of vertices
mVBOVertices.bind();
// Bind the VBO of normals
mVBONormals.bind();
if (hasTexture()) {
// Bind the VBO of texture coords
mVBOTextureCoords.bind();
}
// Bind the VBO of indices
mVBOIndices.bind();
// Unbind the VAO
mVAO.unbind();
}
// Reset the transform
void ConcaveMesh::resetTransform(const rp3d::Transform& transform) {
// Reset the transform
mBody->setTransform(transform);
mBody->setIsSleeping(false);
// Reset the velocity of the rigid body
rp3d::RigidBody* rigidBody = dynamic_cast<rp3d::RigidBody*>(mBody);
if (rigidBody != NULL) {
rigidBody->setLinearVelocity(rp3d::Vector3(0, 0, 0));
rigidBody->setAngularVelocity(rp3d::Vector3(0, 0, 0));
}
updateTransform(1.0f);
}