395 lines
15 KiB
C++
395 lines
15 KiB
C++
/********************************************************************************
|
|
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
|
|
* Copyright (c) 2010-2015 Daniel Chappuis *
|
|
*********************************************************************************
|
|
* *
|
|
* This software is provided 'as-is', without any express or implied warranty. *
|
|
* In no event will the authors be held liable for any damages arising from the *
|
|
* use of this software. *
|
|
* *
|
|
* Permission is granted to anyone to use this software for any purpose, *
|
|
* including commercial applications, and to alter it and redistribute it *
|
|
* freely, subject to the following restrictions: *
|
|
* *
|
|
* 1. The origin of this software must not be misrepresented; you must not claim *
|
|
* that you wrote the original software. If you use this software in a *
|
|
* product, an acknowledgment in the product documentation would be *
|
|
* appreciated but is not required. *
|
|
* *
|
|
* 2. Altered source versions must be plainly marked as such, and must not be *
|
|
* misrepresented as being the original software. *
|
|
* *
|
|
* 3. This notice may not be removed or altered from any source distribution. *
|
|
* *
|
|
********************************************************************************/
|
|
|
|
// Libraries
|
|
#include "Simplex.h"
|
|
#include <cfloat>
|
|
|
|
// We want to use the ReactPhysics3D namespace
|
|
using namespace reactphysics3d;
|
|
|
|
// Constructor
|
|
Simplex::Simplex() : mBitsCurrentSimplex(0x0), mAllBits(0x0) {
|
|
|
|
}
|
|
|
|
// Destructor
|
|
Simplex::~Simplex() {
|
|
|
|
}
|
|
|
|
// Add a new support point of (A-B) into the simplex
|
|
/// suppPointA : support point of object A in a direction -v
|
|
/// suppPointB : support point of object B in a direction v
|
|
/// point : support point of object (A-B) => point = suppPointA - suppPointB
|
|
void Simplex::addPoint(const Vector3& point, const Vector3& suppPointA, const Vector3& suppPointB) {
|
|
assert(!isFull());
|
|
|
|
mLastFound = 0;
|
|
mLastFoundBit = 0x1;
|
|
|
|
// Look for the bit corresponding to one of the four point that is not in
|
|
// the current simplex
|
|
while (overlap(mBitsCurrentSimplex, mLastFoundBit)) {
|
|
mLastFound++;
|
|
mLastFoundBit <<= 1;
|
|
}
|
|
|
|
assert(mLastFound >= 0 && mLastFound < 4);
|
|
|
|
// Add the point into the simplex
|
|
mPoints[mLastFound] = point;
|
|
mPointsLengthSquare[mLastFound] = point.dot(point);
|
|
mAllBits = mBitsCurrentSimplex | mLastFoundBit;
|
|
|
|
// Update the cached values
|
|
updateCache();
|
|
|
|
// Compute the cached determinant values
|
|
computeDeterminants();
|
|
|
|
// Add the support points of objects A and B
|
|
mSuppPointsA[mLastFound] = suppPointA;
|
|
mSuppPointsB[mLastFound] = suppPointB;
|
|
}
|
|
|
|
// Return true if the point is in the simplex
|
|
bool Simplex::isPointInSimplex(const Vector3& point) const {
|
|
int i;
|
|
Bits bit;
|
|
|
|
// For each four possible points in the simplex
|
|
for (i=0, bit = 0x1; i<4; i++, bit <<= 1) {
|
|
// Check if the current point is in the simplex
|
|
if (overlap(mAllBits, bit) && point == mPoints[i]) return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Update the cached values used during the GJK algorithm
|
|
void Simplex::updateCache() {
|
|
int i;
|
|
Bits bit;
|
|
|
|
// For each of the four possible points of the simplex
|
|
for (i=0, bit = 0x1; i<4; i++, bit <<= 1) {
|
|
// If the current points is in the simplex
|
|
if (overlap(mBitsCurrentSimplex, bit)) {
|
|
|
|
// Compute the distance between two points in the possible simplex set
|
|
mDiffLength[i][mLastFound] = mPoints[i] - mPoints[mLastFound];
|
|
mDiffLength[mLastFound][i] = -mDiffLength[i][mLastFound];
|
|
|
|
// Compute the squared length of the vector
|
|
// distances from points in the possible simplex set
|
|
mNormSquare[i][mLastFound] = mNormSquare[mLastFound][i] =
|
|
mDiffLength[i][mLastFound].dot(mDiffLength[i][mLastFound]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Return the points of the simplex
|
|
unsigned int Simplex::getSimplex(Vector3* suppPointsA, Vector3* suppPointsB,
|
|
Vector3* points) const {
|
|
unsigned int nbVertices = 0;
|
|
int i;
|
|
Bits bit;
|
|
|
|
// For each four point in the possible simplex
|
|
for (i=0, bit=0x1; i<4; i++, bit <<=1) {
|
|
|
|
// If the current point is in the simplex
|
|
if (overlap(mBitsCurrentSimplex, bit)) {
|
|
|
|
// Store the points
|
|
suppPointsA[nbVertices] = this->mSuppPointsA[nbVertices];
|
|
suppPointsB[nbVertices] = this->mSuppPointsB[nbVertices];
|
|
points[nbVertices] = this->mPoints[nbVertices];
|
|
|
|
nbVertices++;
|
|
}
|
|
}
|
|
|
|
// Return the number of points in the simplex
|
|
return nbVertices;
|
|
}
|
|
|
|
// Compute the cached determinant values
|
|
void Simplex::computeDeterminants() {
|
|
mDet[mLastFoundBit][mLastFound] = 1.0;
|
|
|
|
// If the current simplex is not empty
|
|
if (!isEmpty()) {
|
|
int i;
|
|
Bits bitI;
|
|
|
|
// For each possible four points in the simplex set
|
|
for (i=0, bitI = 0x1; i<4; i++, bitI <<= 1) {
|
|
|
|
// If the current point is in the simplex
|
|
if (overlap(mBitsCurrentSimplex, bitI)) {
|
|
Bits bit2 = bitI | mLastFoundBit;
|
|
|
|
mDet[bit2][i] = mDiffLength[mLastFound][i].dot(mPoints[mLastFound]);
|
|
mDet[bit2][mLastFound] = mDiffLength[i][mLastFound].dot(mPoints[i]);
|
|
|
|
|
|
int j;
|
|
Bits bitJ;
|
|
|
|
for (j=0, bitJ = 0x1; j<i; j++, bitJ <<= 1) {
|
|
if (overlap(mBitsCurrentSimplex, bitJ)) {
|
|
int k;
|
|
Bits bit3 = bitJ | bit2;
|
|
|
|
k = mNormSquare[i][j] < mNormSquare[mLastFound][j] ? i : mLastFound;
|
|
mDet[bit3][j] = mDet[bit2][i] * mDiffLength[k][j].dot(mPoints[i]) +
|
|
mDet[bit2][mLastFound] *
|
|
mDiffLength[k][j].dot(mPoints[mLastFound]);
|
|
|
|
k = mNormSquare[j][i] < mNormSquare[mLastFound][i] ? j : mLastFound;
|
|
mDet[bit3][i] = mDet[bitJ | mLastFoundBit][j] *
|
|
mDiffLength[k][i].dot(mPoints[j]) +
|
|
mDet[bitJ | mLastFoundBit][mLastFound] *
|
|
mDiffLength[k][i].dot(mPoints[mLastFound]);
|
|
|
|
k = mNormSquare[i][mLastFound] < mNormSquare[j][mLastFound] ? i : j;
|
|
mDet[bit3][mLastFound] = mDet[bitJ | bitI][j] *
|
|
mDiffLength[k][mLastFound].dot(mPoints[j]) +
|
|
mDet[bitJ | bitI][i] *
|
|
mDiffLength[k][mLastFound].dot(mPoints[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (mAllBits == 0xf) {
|
|
int k;
|
|
|
|
k = mNormSquare[1][0] < mNormSquare[2][0] ?
|
|
(mNormSquare[1][0] < mNormSquare[3][0] ? 1 : 3) :
|
|
(mNormSquare[2][0] < mNormSquare[3][0] ? 2 : 3);
|
|
mDet[0xf][0] = mDet[0xe][1] * mDiffLength[k][0].dot(mPoints[1]) +
|
|
mDet[0xe][2] * mDiffLength[k][0].dot(mPoints[2]) +
|
|
mDet[0xe][3] * mDiffLength[k][0].dot(mPoints[3]);
|
|
|
|
k = mNormSquare[0][1] < mNormSquare[2][1] ?
|
|
(mNormSquare[0][1] < mNormSquare[3][1] ? 0 : 3) :
|
|
(mNormSquare[2][1] < mNormSquare[3][1] ? 2 : 3);
|
|
mDet[0xf][1] = mDet[0xd][0] * mDiffLength[k][1].dot(mPoints[0]) +
|
|
mDet[0xd][2] * mDiffLength[k][1].dot(mPoints[2]) +
|
|
mDet[0xd][3] * mDiffLength[k][1].dot(mPoints[3]);
|
|
|
|
k = mNormSquare[0][2] < mNormSquare[1][2] ?
|
|
(mNormSquare[0][2] < mNormSquare[3][2] ? 0 : 3) :
|
|
(mNormSquare[1][2] < mNormSquare[3][2] ? 1 : 3);
|
|
mDet[0xf][2] = mDet[0xb][0] * mDiffLength[k][2].dot(mPoints[0]) +
|
|
mDet[0xb][1] * mDiffLength[k][2].dot(mPoints[1]) +
|
|
mDet[0xb][3] * mDiffLength[k][2].dot(mPoints[3]);
|
|
|
|
k = mNormSquare[0][3] < mNormSquare[1][3] ?
|
|
(mNormSquare[0][3] < mNormSquare[2][3] ? 0 : 2) :
|
|
(mNormSquare[1][3] < mNormSquare[2][3] ? 1 : 2);
|
|
mDet[0xf][3] = mDet[0x7][0] * mDiffLength[k][3].dot(mPoints[0]) +
|
|
mDet[0x7][1] * mDiffLength[k][3].dot(mPoints[1]) +
|
|
mDet[0x7][2] * mDiffLength[k][3].dot(mPoints[2]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Return true if the subset is a proper subset.
|
|
/// A proper subset X is a subset where for all point "y_i" in X, we have
|
|
/// detX_i value bigger than zero
|
|
bool Simplex::isProperSubset(Bits subset) const {
|
|
int i;
|
|
Bits bit;
|
|
|
|
// For each four point of the possible simplex set
|
|
for (i=0, bit=0x1; i<4; i++, bit <<=1) {
|
|
if (overlap(subset, bit) && mDet[subset][i] <= 0.0) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Return true if the set is affinely dependent.
|
|
/// A set if affinely dependent if a point of the set
|
|
/// is an affine combination of other points in the set
|
|
bool Simplex::isAffinelyDependent() const {
|
|
decimal sum = 0.0;
|
|
int i;
|
|
Bits bit;
|
|
|
|
// For each four point of the possible simplex set
|
|
for (i=0, bit=0x1; i<4; i++, bit <<= 1) {
|
|
if (overlap(mAllBits, bit)) {
|
|
sum += mDet[mAllBits][i];
|
|
}
|
|
}
|
|
|
|
return (sum <= 0.0);
|
|
}
|
|
|
|
// Return true if the subset is a valid one for the closest point computation.
|
|
/// A subset X is valid if :
|
|
/// 1. delta(X)_i > 0 for each "i" in I_x and
|
|
/// 2. delta(X U {y_j})_j <= 0 for each "j" not in I_x_
|
|
bool Simplex::isValidSubset(Bits subset) const {
|
|
int i;
|
|
Bits bit;
|
|
|
|
// For each four point in the possible simplex set
|
|
for (i=0, bit=0x1; i<4; i++, bit <<= 1) {
|
|
if (overlap(mAllBits, bit)) {
|
|
// If the current point is in the subset
|
|
if (overlap(subset, bit)) {
|
|
// If one delta(X)_i is smaller or equal to zero
|
|
if (mDet[subset][i] <= 0.0) {
|
|
// The subset is not valid
|
|
return false;
|
|
}
|
|
}
|
|
// If the point is not in the subset and the value delta(X U {y_j})_j
|
|
// is bigger than zero
|
|
else if (mDet[subset | bit][i] > 0.0) {
|
|
// The subset is not valid
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Compute the closest points "pA" and "pB" of object A and B.
|
|
/// The points are computed as follows :
|
|
/// pA = sum(lambda_i * a_i) where "a_i" are the support points of object A
|
|
/// pB = sum(lambda_i * b_i) where "b_i" are the support points of object B
|
|
/// with lambda_i = deltaX_i / deltaX
|
|
void Simplex::computeClosestPointsOfAandB(Vector3& pA, Vector3& pB) const {
|
|
decimal deltaX = 0.0;
|
|
pA.setAllValues(0.0, 0.0, 0.0);
|
|
pB.setAllValues(0.0, 0.0, 0.0);
|
|
int i;
|
|
Bits bit;
|
|
|
|
// For each four points in the possible simplex set
|
|
for (i=0, bit=0x1; i<4; i++, bit <<= 1) {
|
|
// If the current point is part of the simplex
|
|
if (overlap(mBitsCurrentSimplex, bit)) {
|
|
deltaX += mDet[mBitsCurrentSimplex][i];
|
|
pA += mDet[mBitsCurrentSimplex][i] * mSuppPointsA[i];
|
|
pB += mDet[mBitsCurrentSimplex][i] * mSuppPointsB[i];
|
|
}
|
|
}
|
|
|
|
assert(deltaX > 0.0);
|
|
decimal factor = decimal(1.0) / deltaX;
|
|
pA *= factor;
|
|
pB *= factor;
|
|
}
|
|
|
|
// Compute the closest point "v" to the origin of the current simplex.
|
|
/// This method executes the Jonhnson's algorithm for computing the point
|
|
/// "v" of simplex that is closest to the origin. The method returns true
|
|
/// if a closest point has been found.
|
|
bool Simplex::computeClosestPoint(Vector3& v) {
|
|
Bits subset;
|
|
|
|
// For each possible simplex set
|
|
for (subset=mBitsCurrentSimplex; subset != 0x0; subset--) {
|
|
// If the simplex is a subset of the current simplex and is valid for the Johnson's
|
|
// algorithm test
|
|
if (isSubset(subset, mBitsCurrentSimplex) && isValidSubset(subset | mLastFoundBit)) {
|
|
mBitsCurrentSimplex = subset | mLastFoundBit; // Add the last added point to the current simplex
|
|
v = computeClosestPointForSubset(mBitsCurrentSimplex); // Compute the closest point in the simplex
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// If the simplex that contains only the last added point is valid for the Johnson's algorithm test
|
|
if (isValidSubset(mLastFoundBit)) {
|
|
mBitsCurrentSimplex = mLastFoundBit; // Set the current simplex to the set that contains only the last added point
|
|
mMaxLengthSquare = mPointsLengthSquare[mLastFound]; // Update the maximum square length
|
|
v = mPoints[mLastFound]; // The closest point of the simplex "v" is the last added point
|
|
return true;
|
|
}
|
|
|
|
// The algorithm failed to found a point
|
|
return false;
|
|
}
|
|
|
|
// Backup the closest point
|
|
void Simplex::backupClosestPointInSimplex(Vector3& v) {
|
|
decimal minDistSquare = DECIMAL_LARGEST;
|
|
Bits bit;
|
|
|
|
for (bit = mAllBits; bit != 0x0; bit--) {
|
|
if (isSubset(bit, mAllBits) && isProperSubset(bit)) {
|
|
Vector3 u = computeClosestPointForSubset(bit);
|
|
decimal distSquare = u.dot(u);
|
|
if (distSquare < minDistSquare) {
|
|
minDistSquare = distSquare;
|
|
mBitsCurrentSimplex = bit;
|
|
v = u;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Return the closest point "v" in the convex hull of the points in the subset
|
|
// represented by the bits "subset"
|
|
Vector3 Simplex::computeClosestPointForSubset(Bits subset) {
|
|
Vector3 v(0.0, 0.0, 0.0); // Closet point v = sum(lambda_i * points[i])
|
|
mMaxLengthSquare = 0.0;
|
|
decimal deltaX = 0.0; // deltaX = sum of all det[subset][i]
|
|
int i;
|
|
Bits bit;
|
|
|
|
// For each four point in the possible simplex set
|
|
for (i=0, bit=0x1; i<4; i++, bit <<= 1) {
|
|
// If the current point is in the subset
|
|
if (overlap(subset, bit)) {
|
|
// deltaX = sum of all det[subset][i]
|
|
deltaX += mDet[subset][i];
|
|
|
|
if (mMaxLengthSquare < mPointsLengthSquare[i]) {
|
|
mMaxLengthSquare = mPointsLengthSquare[i];
|
|
}
|
|
|
|
// Closest point v = sum(lambda_i * points[i])
|
|
v += mDet[subset][i] * mPoints[i];
|
|
}
|
|
}
|
|
|
|
assert(deltaX > 0.0);
|
|
|
|
// Return the closet point "v" in the convex hull for the given subset
|
|
return (decimal(1.0) / deltaX) * v;
|
|
}
|