reactphysics3d/src/components/DynamicsComponents.h

561 lines
21 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2018 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef REACTPHYSICS3D_DYNAMICS_COMPONENTS_H
#define REACTPHYSICS3D_DYNAMICS_COMPONENTS_H
// Libraries
#include "mathematics/Transform.h"
#include "engine/Entity.h"
#include "components/Components.h"
#include "mathematics/Matrix3x3.h"
#include "containers/Map.h"
// ReactPhysics3D namespace
namespace reactphysics3d {
// Class declarations
class MemoryAllocator;
class EntityManager;
// Class DynamicsComponents
/**
* This class represent the component of the ECS that contains the variables concerning dynamics
* like velocities. A rigid body that is not static always has a dynamics component. A rigid body
* that is static does not have one because it is not simulated by dynamics.
*/
class DynamicsComponents : public Components {
private:
// -------------------- Attributes -------------------- //
/// Array of body entities of each component
Entity* mBodies;
/// Array with the constrained linear velocity of each component
Vector3* mConstrainedLinearVelocities;
/// Array with the constrained angular velocity of each component
Vector3* mConstrainedAngularVelocities;
/// Array with the split linear velocity of each component
Vector3* mSplitLinearVelocities;
/// Array with the split angular velocity of each component
Vector3* mSplitAngularVelocities;
/// Array with the external force of each component
Vector3* mExternalForces;
/// Array with the external torque of each component
Vector3* mExternalTorques;
/// Array with the linear damping factor of each component
decimal* mLinearDampings;
/// Array with the angular damping factor of each component
decimal* mAngularDampings;
/// Array with the initial mass of each component
decimal* mInitMasses;
/// Array with the inverse mass of each component
decimal* mInverseMasses;
/// Array with the inverse of the inertia tensor of each component
Matrix3x3* mInverseInertiaTensorsLocal;
/// Array with the inverse of the world inertia tensor of each component
Matrix3x3* mInverseInertiaTensorsWorld;
/// Array with the constrained position of each component (for position error correction)
Vector3* mConstrainedPositions;
/// Array of constrained orientation for each component (for position error correction)
Quaternion* mConstrainedOrientations;
/// Array of center of mass of each component (in local-space coordinates)
Vector3* mCentersOfMassLocal;
/// Array of center of mass of each component (in world-space coordinates)
Vector3* mCentersOfMassWorld;
/// True if the gravity needs to be applied to this component
bool* mIsGravityEnabled;
/// Array with the boolean value to know if the body has already been added into an island
bool* mIsAlreadyInIsland;
// -------------------- Methods -------------------- //
/// Allocate memory for a given number of components
virtual void allocate(uint32 nbComponentsToAllocate) override;
/// Destroy a component at a given index
virtual void destroyComponent(uint32 index) override;
/// Move a component from a source to a destination index in the components array
virtual void moveComponentToIndex(uint32 srcIndex, uint32 destIndex) override;
/// Swap two components in the array
virtual void swapComponents(uint32 index1, uint32 index2) override;
public:
/// Structure for the data of a transform component
struct DynamicsComponent {
const Vector3& worldPosition;
/// Constructor
DynamicsComponent(const Vector3& worldPosition)
: worldPosition(worldPosition) {
}
};
// -------------------- Methods -------------------- //
/// Constructor
DynamicsComponents(MemoryAllocator& allocator);
/// Destructor
virtual ~DynamicsComponents() override = default;
/// Add a component
void addComponent(Entity bodyEntity, bool isSleeping, const DynamicsComponent& component);
/// Return the constrained linear velocity of an entity
const Vector3& getConstrainedLinearVelocity(Entity bodyEntity) const;
/// Return the constrained angular velocity of an entity
const Vector3& getConstrainedAngularVelocity(Entity bodyEntity) const;
/// Return the split linear velocity of an entity
const Vector3& getSplitLinearVelocity(Entity bodyEntity) const;
/// Return the split angular velocity of an entity
const Vector3& getSplitAngularVelocity(Entity bodyEntity) const;
/// Return the external force of an entity
const Vector3& getExternalForce(Entity bodyEntity) const;
/// Return the external torque of an entity
const Vector3& getExternalTorque(Entity bodyEntity) const;
/// Return the linear damping factor of an entity
decimal getLinearDamping(Entity bodyEntity) const;
/// Return the angular damping factor of an entity
decimal getAngularDamping(Entity bodyEntity) const;
/// Return the initial mass of an entity
decimal getInitMass(Entity bodyEntity) const;
/// Return the mass inverse of an entity
decimal getMassInverse(Entity bodyEntity) const;
/// Return the inverse local inertia tensor of an entity
const Matrix3x3& getInertiaTensorLocalInverse(Entity bodyEntity);
/// Return the inverse world inertia tensor of an entity
const Matrix3x3& getInertiaTensorWorldInverse(Entity bodyEntity);
/// Return the constrained position of an entity
const Vector3& getConstrainedPosition(Entity bodyEntity);
/// Return the constrained orientation of an entity
const Quaternion& getConstrainedOrientation(Entity bodyEntity);
/// Return the local center of mass of an entity
const Vector3& getCenterOfMassLocal(Entity bodyEntity);
/// Return the world center of mass of an entity
const Vector3& getCenterOfMassWorld(Entity bodyEntity);
/// Return true if gravity is enabled for this entity
bool getIsGravityEnabled(Entity bodyEntity) const;
/// Return true if the entity is already in an island
bool getIsAlreadyInIsland(Entity bodyEntity) const;
/// Set the constrained linear velocity of an entity
void setConstrainedLinearVelocity(Entity bodyEntity, const Vector3& constrainedLinearVelocity);
/// Set the constrained angular velocity of an entity
void setConstrainedAngularVelocity(Entity bodyEntity, const Vector3& constrainedAngularVelocity);
/// Set the split linear velocity of an entity
void setSplitLinearVelocity(Entity bodyEntity, const Vector3& splitLinearVelocity);
/// Set the split angular velocity of an entity
void setSplitAngularVelocity(Entity bodyEntity, const Vector3& splitAngularVelocity);
/// Set the external force of an entity
void setExternalForce(Entity bodyEntity, const Vector3& externalForce);
/// Set the external force of an entity
void setExternalTorque(Entity bodyEntity, const Vector3& externalTorque);
/// Set the linear damping factor of an entity
void setLinearDamping(Entity bodyEntity, decimal linearDamping);
/// Set the angular damping factor of an entity
void setAngularDamping(Entity bodyEntity, decimal angularDamping);
/// Set the initial mass of an entity
void setInitMass(Entity bodyEntity, decimal initMass);
/// Set the inverse mass of an entity
void setMassInverse(Entity bodyEntity, decimal inverseMass);
/// Set the inverse local inertia tensor of an entity
void setInverseInertiaTensorLocal(Entity bodyEntity, const Matrix3x3& inertiaTensorLocalInverse);
/// Set the inverse world inertia tensor of an entity
void setInverseInertiaTensorWorld(Entity bodyEntity, const Matrix3x3& inertiaTensorWorldInverse);
/// Set the constrained position of an entity
void setConstrainedPosition(Entity bodyEntity, const Vector3& constrainedPosition);
/// Set the constrained orientation of an entity
void setConstrainedOrientation(Entity bodyEntity, const Quaternion& constrainedOrientation);
/// Set the local center of mass of an entity
void setCenterOfMassLocal(Entity bodyEntity, const Vector3& centerOfMassLocal);
/// Set the world center of mass of an entity
void setCenterOfMassWorld(Entity bodyEntity, const Vector3& centerOfMassWorld);
/// Set the value to know if the gravity is enabled for this entity
void setIsGravityEnabled(Entity bodyEntity, bool isGravityEnabled);
/// Set the value to know if the entity is already in an island
void setIsAlreadyInIsland(Entity bodyEntity, bool isAlreadyInIsland);
// -------------------- Friendship -------------------- //
friend class BroadPhaseSystem;
friend class DynamicsWorld;
friend class ContactSolver;
friend class BallAndSocketJoint;
friend class FixedJoint;
friend class HingeJoint;
friend class SliderJoint;
};
// Return the constrained linear velocity of an entity
inline const Vector3& DynamicsComponents::getConstrainedLinearVelocity(Entity bodyEntity) const {
assert(mMapEntityToComponentIndex.containsKey(bodyEntity));
return mConstrainedLinearVelocities[mMapEntityToComponentIndex[bodyEntity]];
}
// Return the constrained angular velocity of an entity
inline const Vector3& DynamicsComponents::getConstrainedAngularVelocity(Entity bodyEntity) const {
assert(mMapEntityToComponentIndex.containsKey(bodyEntity));
return mConstrainedAngularVelocities[mMapEntityToComponentIndex[bodyEntity]];
}
// Return the split linear velocity of an entity
inline const Vector3& DynamicsComponents::getSplitLinearVelocity(Entity bodyEntity) const {
assert(mMapEntityToComponentIndex.containsKey(bodyEntity));
return mSplitLinearVelocities[mMapEntityToComponentIndex[bodyEntity]];
}
// Return the split angular velocity of an entity
inline const Vector3& DynamicsComponents::getSplitAngularVelocity(Entity bodyEntity) const {
assert(mMapEntityToComponentIndex.containsKey(bodyEntity));
return mSplitAngularVelocities[mMapEntityToComponentIndex[bodyEntity]];
}
// Return the external force of an entity
inline const Vector3& DynamicsComponents::getExternalForce(Entity bodyEntity) const {
assert(mMapEntityToComponentIndex.containsKey(bodyEntity));
return mExternalForces[mMapEntityToComponentIndex[bodyEntity]];
}
// Return the external torque of an entity
inline const Vector3& DynamicsComponents::getExternalTorque(Entity bodyEntity) const {
assert(mMapEntityToComponentIndex.containsKey(bodyEntity));
return mExternalTorques[mMapEntityToComponentIndex[bodyEntity]];
}
// Return the linear damping factor of an entity
inline decimal DynamicsComponents::getLinearDamping(Entity bodyEntity) const {
assert(mMapEntityToComponentIndex.containsKey(bodyEntity));
return mLinearDampings[mMapEntityToComponentIndex[bodyEntity]];
}
// Return the angular damping factor of an entity
inline decimal DynamicsComponents::getAngularDamping(Entity bodyEntity) const {
assert(mMapEntityToComponentIndex.containsKey(bodyEntity));
return mAngularDampings[mMapEntityToComponentIndex[bodyEntity]];
}
// Return the initial mass of an entity
inline decimal DynamicsComponents::getInitMass(Entity bodyEntity) const {
assert(mMapEntityToComponentIndex.containsKey(bodyEntity));
return mInitMasses[mMapEntityToComponentIndex[bodyEntity]];
}
// Return the inverse mass of an entity
inline decimal DynamicsComponents::getMassInverse(Entity bodyEntity) const {
assert(mMapEntityToComponentIndex.containsKey(bodyEntity));
return mInverseMasses[mMapEntityToComponentIndex[bodyEntity]];
}
// Return the inverse local inertia tensor of an entity
inline const Matrix3x3& DynamicsComponents::getInertiaTensorLocalInverse(Entity bodyEntity) {
assert(mMapEntityToComponentIndex.containsKey(bodyEntity));
return mInverseInertiaTensorsLocal[mMapEntityToComponentIndex[bodyEntity]];
}
// Return the inverse world inertia tensor of an entity
inline const Matrix3x3& DynamicsComponents::getInertiaTensorWorldInverse(Entity bodyEntity) {
assert(mMapEntityToComponentIndex.containsKey(bodyEntity));
return mInverseInertiaTensorsWorld[mMapEntityToComponentIndex[bodyEntity]];
}
// Return the constrained position of an entity
inline const Vector3& DynamicsComponents::getConstrainedPosition(Entity bodyEntity) {
assert(mMapEntityToComponentIndex.containsKey(bodyEntity));
return mConstrainedPositions[mMapEntityToComponentIndex[bodyEntity]];
}
// Return the constrained orientation of an entity
inline const Quaternion& DynamicsComponents::getConstrainedOrientation(Entity bodyEntity) {
assert(mMapEntityToComponentIndex.containsKey(bodyEntity));
return mConstrainedOrientations[mMapEntityToComponentIndex[bodyEntity]];
}
// Return the local center of mass of an entity
inline const Vector3& DynamicsComponents::getCenterOfMassLocal(Entity bodyEntity) {
assert(mMapEntityToComponentIndex.containsKey(bodyEntity));
return mCentersOfMassLocal[mMapEntityToComponentIndex[bodyEntity]];
}
// Return the world center of mass of an entity
inline const Vector3& DynamicsComponents::getCenterOfMassWorld(Entity bodyEntity) {
assert(mMapEntityToComponentIndex.containsKey(bodyEntity));
return mCentersOfMassWorld[mMapEntityToComponentIndex[bodyEntity]];
}
// Set the constrained linear velocity of an entity
inline void DynamicsComponents::setConstrainedLinearVelocity(Entity bodyEntity, const Vector3& constrainedLinearVelocity) {
assert(mMapEntityToComponentIndex.containsKey(bodyEntity));
mConstrainedLinearVelocities[mMapEntityToComponentIndex[bodyEntity]] = constrainedLinearVelocity;
}
// Set the constrained angular velocity of an entity
inline void DynamicsComponents::setConstrainedAngularVelocity(Entity bodyEntity, const Vector3& constrainedAngularVelocity) {
assert(mMapEntityToComponentIndex.containsKey(bodyEntity));
mConstrainedAngularVelocities[mMapEntityToComponentIndex[bodyEntity]] = constrainedAngularVelocity;
}
// Set the split linear velocity of an entity
inline void DynamicsComponents::setSplitLinearVelocity(Entity bodyEntity, const Vector3& splitLinearVelocity) {
assert(mMapEntityToComponentIndex.containsKey(bodyEntity));
mSplitLinearVelocities[mMapEntityToComponentIndex[bodyEntity]] = splitLinearVelocity;
}
// Set the split angular velocity of an entity
inline void DynamicsComponents::setSplitAngularVelocity(Entity bodyEntity, const Vector3& splitAngularVelocity) {
assert(mMapEntityToComponentIndex.containsKey(bodyEntity));
mSplitAngularVelocities[mMapEntityToComponentIndex[bodyEntity]] = splitAngularVelocity;
}
// Set the external force of an entity
inline void DynamicsComponents::setExternalForce(Entity bodyEntity, const Vector3& externalForce) {
assert(mMapEntityToComponentIndex.containsKey(bodyEntity));
mExternalForces[mMapEntityToComponentIndex[bodyEntity]] = externalForce;
}
// Set the external force of an entity
inline void DynamicsComponents::setExternalTorque(Entity bodyEntity, const Vector3& externalTorque) {
assert(mMapEntityToComponentIndex.containsKey(bodyEntity));
mExternalTorques[mMapEntityToComponentIndex[bodyEntity]] = externalTorque;
}
// Set the linear damping factor of an entity
inline void DynamicsComponents::setLinearDamping(Entity bodyEntity, decimal linearDamping) {
assert(mMapEntityToComponentIndex.containsKey(bodyEntity));
mLinearDampings[mMapEntityToComponentIndex[bodyEntity]] = linearDamping;
}
// Set the angular damping factor of an entity
inline void DynamicsComponents::setAngularDamping(Entity bodyEntity, decimal angularDamping) {
assert(mMapEntityToComponentIndex.containsKey(bodyEntity));
mAngularDampings[mMapEntityToComponentIndex[bodyEntity]] = angularDamping;
}
// Set the initial mass of an entity
inline void DynamicsComponents::setInitMass(Entity bodyEntity, decimal initMass) {
assert(mMapEntityToComponentIndex.containsKey(bodyEntity));
mInitMasses[mMapEntityToComponentIndex[bodyEntity]] = initMass;
}
// Set the mass inverse of an entity
inline void DynamicsComponents::setMassInverse(Entity bodyEntity, decimal inverseMass) {
assert(mMapEntityToComponentIndex.containsKey(bodyEntity));
mInverseMasses[mMapEntityToComponentIndex[bodyEntity]] = inverseMass;
}
// Set the inverse local inertia tensor of an entity
inline void DynamicsComponents::setInverseInertiaTensorLocal(Entity bodyEntity, const Matrix3x3& inertiaTensorLocalInverse) {
assert(mMapEntityToComponentIndex.containsKey(bodyEntity));
mInverseInertiaTensorsLocal[mMapEntityToComponentIndex[bodyEntity]] = inertiaTensorLocalInverse;
}
// Set the inverse world inertia tensor of an entity
inline void DynamicsComponents::setInverseInertiaTensorWorld(Entity bodyEntity, const Matrix3x3& inertiaTensorWorldInverse) {
assert(mMapEntityToComponentIndex.containsKey(bodyEntity));
mInverseInertiaTensorsWorld[mMapEntityToComponentIndex[bodyEntity]] = inertiaTensorWorldInverse;
}
// Set the constrained position of an entity
inline void DynamicsComponents::setConstrainedPosition(Entity bodyEntity, const Vector3& constrainedPosition) {
assert(mMapEntityToComponentIndex.containsKey(bodyEntity));
mConstrainedPositions[mMapEntityToComponentIndex[bodyEntity]] = constrainedPosition;
}
// Set the constrained orientation of an entity
inline void DynamicsComponents::setConstrainedOrientation(Entity bodyEntity, const Quaternion& constrainedOrientation) {
assert(mMapEntityToComponentIndex.containsKey(bodyEntity));
mConstrainedOrientations[mMapEntityToComponentIndex[bodyEntity]] = constrainedOrientation;
}
// Set the local center of mass of an entity
inline void DynamicsComponents::setCenterOfMassLocal(Entity bodyEntity, const Vector3& centerOfMassLocal) {
assert(mMapEntityToComponentIndex.containsKey(bodyEntity));
mCentersOfMassLocal[mMapEntityToComponentIndex[bodyEntity]] = centerOfMassLocal;
}
// Set the world center of mass of an entity
inline void DynamicsComponents::setCenterOfMassWorld(Entity bodyEntity, const Vector3& centerOfMassWorld) {
assert(mMapEntityToComponentIndex.containsKey(bodyEntity));
mCentersOfMassWorld[mMapEntityToComponentIndex[bodyEntity]] = centerOfMassWorld;
}
// Return true if gravity is enabled for this entity
inline bool DynamicsComponents::getIsGravityEnabled(Entity bodyEntity) const {
assert(mMapEntityToComponentIndex.containsKey(bodyEntity));
return mIsGravityEnabled[mMapEntityToComponentIndex[bodyEntity]];
}
// Return true if the entity is already in an island
inline bool DynamicsComponents::getIsAlreadyInIsland(Entity bodyEntity) const {
assert(mMapEntityToComponentIndex.containsKey(bodyEntity));
return mIsAlreadyInIsland[mMapEntityToComponentIndex[bodyEntity]];
}
// Set the value to know if the gravity is enabled for this entity
inline void DynamicsComponents::setIsGravityEnabled(Entity bodyEntity, bool isGravityEnabled) {
assert(mMapEntityToComponentIndex.containsKey(bodyEntity));
mIsGravityEnabled[mMapEntityToComponentIndex[bodyEntity]] = isGravityEnabled;
}
// Set the value to know if the entity is already in an island
inline void DynamicsComponents::setIsAlreadyInIsland(Entity bodyEntity, bool isAlreadyInIsland) {
assert(mMapEntityToComponentIndex.containsKey(bodyEntity));
mIsAlreadyInIsland[mMapEntityToComponentIndex[bodyEntity]] = isAlreadyInIsland;
}
}
#endif