reactphysics3d/src/components/SliderJointComponents.cpp
2019-09-19 17:12:52 +02:00

452 lines
25 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2018 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
// Libraries
#include "SliderJointComponents.h"
#include "engine/EntityManager.h"
#include "mathematics/Matrix3x3.h"
#include <cassert>
// We want to use the ReactPhysics3D namespace
using namespace reactphysics3d;
// Constructor
SliderJointComponents::SliderJointComponents(MemoryAllocator& allocator)
:Components(allocator, sizeof(Entity) + sizeof(SliderJoint*) + sizeof(Vector3) +
sizeof(Vector3) +
sizeof(Matrix3x3) + sizeof(Matrix3x3) + sizeof(Vector2) +
sizeof(Vector3) + sizeof(Matrix2x2) + sizeof(Matrix3x3) +
sizeof(Vector2) + sizeof(Vector3) + sizeof(Quaternion) +
sizeof(Vector3) + sizeof(Vector3) + sizeof(Vector3) + sizeof(Vector3) +
sizeof(Vector3) + sizeof(Vector3) + sizeof(decimal) + sizeof(decimal) + sizeof(decimal) +
sizeof(decimal) + sizeof(decimal) + sizeof(decimal) + sizeof(decimal) +
sizeof(bool) + sizeof(bool) + sizeof(decimal) + sizeof(decimal) +
sizeof(bool) + sizeof(bool) + sizeof(decimal) + sizeof(decimal) +
sizeof(Vector3) + sizeof(Vector3) + sizeof(Vector3) + sizeof(Vector3) +
sizeof(Vector3) + sizeof(Vector3)) {
// Allocate memory for the components data
allocate(INIT_NB_ALLOCATED_COMPONENTS);
}
// Allocate memory for a given number of components
void SliderJointComponents::allocate(uint32 nbComponentsToAllocate) {
assert(nbComponentsToAllocate > mNbAllocatedComponents);
// Size for the data of a single component (in bytes)
const size_t totalSizeBytes = nbComponentsToAllocate * mComponentDataSize;
// Allocate memory
void* newBuffer = mMemoryAllocator.allocate(totalSizeBytes);
assert(newBuffer != nullptr);
// New pointers to components data
Entity* newJointEntities = static_cast<Entity*>(newBuffer);
SliderJoint** newJoints = reinterpret_cast<SliderJoint**>(newJointEntities + nbComponentsToAllocate);
Vector3* newLocalAnchorPointBody1 = reinterpret_cast<Vector3*>(newJoints + nbComponentsToAllocate);
Vector3* newLocalAnchorPointBody2 = reinterpret_cast<Vector3*>(newLocalAnchorPointBody1 + nbComponentsToAllocate);
Matrix3x3* newI1 = reinterpret_cast<Matrix3x3*>(newLocalAnchorPointBody2 + nbComponentsToAllocate);
Matrix3x3* newI2 = reinterpret_cast<Matrix3x3*>(newI1 + nbComponentsToAllocate);
Vector2* newImpulseTranslation = reinterpret_cast<Vector2*>(newI2 + nbComponentsToAllocate);
Vector3* newImpulseRotation = reinterpret_cast<Vector3*>(newImpulseTranslation + nbComponentsToAllocate);
Matrix2x2* newInverseMassMatrixTranslation = reinterpret_cast<Matrix2x2*>(newImpulseRotation + nbComponentsToAllocate);
Matrix3x3* newInverseMassMatrixRotation = reinterpret_cast<Matrix3x3*>(newInverseMassMatrixTranslation + nbComponentsToAllocate);
Vector2* newBiasTranslation = reinterpret_cast<Vector2*>(newInverseMassMatrixRotation + nbComponentsToAllocate);
Vector3* newBiasRotation = reinterpret_cast<Vector3*>(newBiasTranslation + nbComponentsToAllocate);
Quaternion* newInitOrientationDifferenceInv = reinterpret_cast<Quaternion*>(newBiasRotation + nbComponentsToAllocate);
Vector3* newSliderAxisBody1 = reinterpret_cast<Vector3*>(newInitOrientationDifferenceInv + nbComponentsToAllocate);
Vector3* newSliderAxisWorld = reinterpret_cast<Vector3*>(newSliderAxisBody1 + nbComponentsToAllocate);
Vector3* newR1 = reinterpret_cast<Vector3*>(newSliderAxisWorld + nbComponentsToAllocate);
Vector3* newR2 = reinterpret_cast<Vector3*>(newR1 + nbComponentsToAllocate);
Vector3* newN1 = reinterpret_cast<Vector3*>(newR2 + nbComponentsToAllocate);
Vector3* newN2 = reinterpret_cast<Vector3*>(newN1 + nbComponentsToAllocate);
decimal* newImpulseLowerLimit = reinterpret_cast<decimal*>(newN2 + nbComponentsToAllocate);
decimal* newImpulseUpperLimit = reinterpret_cast<decimal*>(newImpulseLowerLimit + nbComponentsToAllocate);
decimal* newImpulseMotor = reinterpret_cast<decimal*>(newImpulseUpperLimit + nbComponentsToAllocate);
decimal* newInverseMassMatrixLimit = reinterpret_cast<decimal*>(newImpulseMotor + nbComponentsToAllocate);
decimal* newInverseMassMatrixMotor = reinterpret_cast<decimal*>(newInverseMassMatrixLimit + nbComponentsToAllocate);
decimal* newBLowerLimit = reinterpret_cast<decimal*>(newInverseMassMatrixMotor + nbComponentsToAllocate);
decimal* newBUpperLimit = reinterpret_cast<decimal*>(newBLowerLimit + nbComponentsToAllocate);
bool* newIsLimitEnabled = reinterpret_cast<bool*>(newBUpperLimit + nbComponentsToAllocate);
bool* newIsMotorEnabled = reinterpret_cast<bool*>(newIsLimitEnabled + nbComponentsToAllocate);
decimal* newLowerLimit = reinterpret_cast<decimal*>(newIsMotorEnabled + nbComponentsToAllocate);
decimal* newUpperLimit = reinterpret_cast<decimal*>(newLowerLimit + nbComponentsToAllocate);
bool* newIsLowerLimitViolated = reinterpret_cast<bool*>(newUpperLimit + nbComponentsToAllocate);
bool* newIsUpperLimitViolated = reinterpret_cast<bool*>(newIsLowerLimitViolated + nbComponentsToAllocate);
decimal* newMotorSpeed = reinterpret_cast<decimal*>(newIsUpperLimitViolated + nbComponentsToAllocate);
decimal* newMaxMotorForce = reinterpret_cast<decimal*>(newMotorSpeed + nbComponentsToAllocate);
Vector3* newR2CrossN1 = reinterpret_cast<Vector3*>(newMaxMotorForce + nbComponentsToAllocate);
Vector3* newR2CrossN2 = reinterpret_cast<Vector3*>(newR2CrossN1 + nbComponentsToAllocate);
Vector3* newR2CrossSliderAxis = reinterpret_cast<Vector3*>(newR2CrossN2 + nbComponentsToAllocate);
Vector3* newR1PlusUCrossN1 = reinterpret_cast<Vector3*>(newR2CrossSliderAxis + nbComponentsToAllocate);
Vector3* newR1PlusUCrossN2 = reinterpret_cast<Vector3*>(newR1PlusUCrossN1 + nbComponentsToAllocate);
Vector3* newR1PlusUCrossSliderAxis = reinterpret_cast<Vector3*>(newR1PlusUCrossN2 + nbComponentsToAllocate);
// If there was already components before
if (mNbComponents > 0) {
// Copy component data from the previous buffer to the new one
memcpy(newJointEntities, mJointEntities, mNbComponents * sizeof(Entity));
memcpy(newJoints, mJoints, mNbComponents * sizeof(SliderJoint*));
memcpy(newLocalAnchorPointBody1, mLocalAnchorPointBody1, mNbComponents * sizeof(Vector3));
memcpy(newLocalAnchorPointBody2, mLocalAnchorPointBody2, mNbComponents * sizeof(Vector3));
memcpy(newI1, mI1, mNbComponents * sizeof(Matrix3x3));
memcpy(newI2, mI2, mNbComponents * sizeof(Matrix3x3));
memcpy(newImpulseTranslation, mImpulseTranslation, mNbComponents * sizeof(Vector2));
memcpy(newImpulseRotation, mImpulseRotation, mNbComponents * sizeof(Vector3));
memcpy(newInverseMassMatrixTranslation, mInverseMassMatrixTranslation, mNbComponents * sizeof(Matrix2x2));
memcpy(newInverseMassMatrixRotation, mInverseMassMatrixRotation, mNbComponents * sizeof(Matrix3x3));
memcpy(newBiasTranslation, mBiasTranslation, mNbComponents * sizeof(Vector2));
memcpy(newBiasRotation, mBiasRotation, mNbComponents * sizeof(Vector3));
memcpy(newInitOrientationDifferenceInv, mInitOrientationDifferenceInv, mNbComponents * sizeof(Quaternion));
memcpy(newSliderAxisBody1, mSliderAxisBody1, mNbComponents * sizeof(Vector3));
memcpy(newSliderAxisWorld, mSliderAxisWorld, mNbComponents * sizeof(Vector3));
memcpy(newR1, mR1, mNbComponents * sizeof(Vector3));
memcpy(newR2, mR2, mNbComponents * sizeof(Vector3));
memcpy(newN1, mN1, mNbComponents * sizeof(Vector3));
memcpy(newN2, mN2, mNbComponents * sizeof(Vector3));
memcpy(newImpulseLowerLimit, mImpulseLowerLimit, mNbComponents * sizeof(decimal));
memcpy(newImpulseUpperLimit, mImpulseUpperLimit, mNbComponents * sizeof(decimal));
memcpy(newImpulseMotor, mImpulseMotor, mNbComponents * sizeof(decimal));
memcpy(newInverseMassMatrixLimit, mInverseMassMatrixLimit, mNbComponents * sizeof(decimal));
memcpy(newInverseMassMatrixMotor, mInverseMassMatrixMotor, mNbComponents * sizeof(decimal));
memcpy(newBLowerLimit, mBLowerLimit, mNbComponents * sizeof(decimal));
memcpy(newBUpperLimit, mBUpperLimit, mNbComponents * sizeof(decimal));
memcpy(newIsLimitEnabled, mIsLimitEnabled, mNbComponents * sizeof(bool));
memcpy(newIsMotorEnabled, mIsMotorEnabled, mNbComponents * sizeof(bool));
memcpy(newLowerLimit, mLowerLimit, mNbComponents * sizeof(decimal));
memcpy(newUpperLimit, mUpperLimit, mNbComponents * sizeof(decimal));
memcpy(newIsLowerLimitViolated, mIsLowerLimitViolated, mNbComponents * sizeof(bool));
memcpy(newIsUpperLimitViolated, mIsUpperLimitViolated, mNbComponents * sizeof(bool));
memcpy(newMotorSpeed, mMotorSpeed, mNbComponents * sizeof(decimal));
memcpy(newMaxMotorForce, mMaxMotorForce, mNbComponents * sizeof(decimal));
memcpy(newR2CrossN1, mR2CrossN1, mNbComponents * sizeof(decimal));
memcpy(newR2CrossN2, mR2CrossN2, mNbComponents * sizeof(decimal));
memcpy(newR2CrossSliderAxis, mR2CrossSliderAxis, mNbComponents * sizeof(decimal));
memcpy(newR1PlusUCrossN1, mR1PlusUCrossN1, mNbComponents * sizeof(decimal));
memcpy(newR1PlusUCrossN2, mR1PlusUCrossN2, mNbComponents * sizeof(decimal));
memcpy(newR1PlusUCrossSliderAxis, mR1PlusUCrossSliderAxis, mNbComponents * sizeof(decimal));
// Deallocate previous memory
mMemoryAllocator.release(mBuffer, mNbAllocatedComponents * mComponentDataSize);
}
mBuffer = newBuffer;
mJointEntities = newJointEntities;
mJoints = newJoints;
mNbAllocatedComponents = nbComponentsToAllocate;
mLocalAnchorPointBody1 = newLocalAnchorPointBody1;
mLocalAnchorPointBody2 = newLocalAnchorPointBody2;
mI1 = newI1;
mI2 = newI2;
mImpulseTranslation = newImpulseTranslation;
mImpulseRotation = newImpulseRotation;
mInverseMassMatrixTranslation = newInverseMassMatrixTranslation;
mInverseMassMatrixRotation = newInverseMassMatrixRotation;
mBiasTranslation = newBiasTranslation;
mBiasRotation = newBiasRotation;
mInitOrientationDifferenceInv = newInitOrientationDifferenceInv;
mSliderAxisBody1 = newSliderAxisBody1;
mSliderAxisWorld = newSliderAxisWorld;
mR1 = newR1;
mR2 = newR2;
mN1 = newN1;
mN2 = newN2;
mImpulseLowerLimit = newImpulseLowerLimit;
mImpulseUpperLimit = newImpulseUpperLimit;
mImpulseMotor = newImpulseMotor;
mInverseMassMatrixLimit = newInverseMassMatrixLimit;
mInverseMassMatrixMotor = newInverseMassMatrixMotor;
mBLowerLimit = newBLowerLimit;
mBUpperLimit = newBUpperLimit;
mIsLimitEnabled = newIsLimitEnabled;
mIsMotorEnabled = newIsMotorEnabled;
mLowerLimit = newLowerLimit;
mUpperLimit = newUpperLimit;
mIsLowerLimitViolated = newIsLowerLimitViolated;
mIsUpperLimitViolated = newIsUpperLimitViolated;
mMotorSpeed = newMotorSpeed;
mMaxMotorForce = newMaxMotorForce;
mR2CrossN1 = newR2CrossN1;
mR2CrossN2 = newR2CrossN2;
mR2CrossSliderAxis = newR2CrossSliderAxis;
mR1PlusUCrossN1 = newR1PlusUCrossN1;
mR1PlusUCrossN2 = newR1PlusUCrossN2;
mR1PlusUCrossSliderAxis = newR1PlusUCrossSliderAxis;
}
// Add a component
void SliderJointComponents::addComponent(Entity jointEntity, bool isSleeping, const SliderJointComponent& component) {
// Prepare to add new component (allocate memory if necessary and compute insertion index)
uint32 index = prepareAddComponent(isSleeping);
// Insert the new component data
new (mJointEntities + index) Entity(jointEntity);
mJoints[index] = nullptr;
new (mLocalAnchorPointBody1 + index) Vector3(0, 0, 0);
new (mLocalAnchorPointBody2 + index) Vector3(0, 0, 0);
new (mI1 + index) Matrix3x3();
new (mI2 + index) Matrix3x3();
new (mImpulseTranslation + index) Vector2(0, 0);
new (mImpulseRotation + index) Vector3(0, 0, 0);
new (mInverseMassMatrixTranslation + index) Matrix2x2();
new (mInverseMassMatrixRotation + index) Matrix3x3();
new (mBiasTranslation + index) Vector2(0, 0);
new (mBiasRotation + index) Vector3(0, 0, 0);
new (mInitOrientationDifferenceInv + index) Quaternion(0, 0, 0, 0);
new (mSliderAxisBody1 + index) Vector3(0, 0, 0);
new (mSliderAxisWorld + index) Vector3(0, 0, 0);
new (mR1 + index) Vector3(0, 0, 0);
new (mR2 + index) Vector3(0, 0, 0);
new (mN1 + index) Vector3(0, 0, 0);
new (mN2 + index) Vector3(0, 0, 0);
mImpulseLowerLimit[index] = decimal(0.0);
mImpulseUpperLimit[index] = decimal(0.0);
mImpulseMotor[index] = decimal(0.0);
mInverseMassMatrixLimit[index] = decimal(0.0);
mInverseMassMatrixMotor[index] = decimal(0.0);
mBLowerLimit[index] = decimal(0.0);
mBUpperLimit[index] = decimal(0.0);
mIsLimitEnabled[index] = component.isLimitEnabled;
mIsMotorEnabled[index] = component.isMotorEnabled;
mLowerLimit[index] = component.lowerLimit;
mUpperLimit[index] = component.upperLimit;
mIsLowerLimitViolated[index] = false;
mIsUpperLimitViolated[index] = false;
mMotorSpeed[index] = component.motorSpeed;
mMaxMotorForce[index] = component.maxMotorForce;
new (mR2CrossN1 + index) Vector3(0, 0, 0);
new (mR2CrossN2 + index) Vector3(0, 0, 0);
new (mR2CrossSliderAxis + index) Vector3(0, 0, 0);
new (mR1PlusUCrossN1 + index) Vector3(0, 0, 0);
new (mR1PlusUCrossN2 + index) Vector3(0, 0, 0);
new (mR1PlusUCrossSliderAxis + index) Vector3(0, 0, 0);
// Map the entity with the new component lookup index
mMapEntityToComponentIndex.add(Pair<Entity, uint32>(jointEntity, index));
mNbComponents++;
assert(mDisabledStartIndex <= mNbComponents);
assert(mNbComponents == static_cast<uint32>(mMapEntityToComponentIndex.size()));
}
// Move a component from a source to a destination index in the components array
// The destination location must contain a constructed object
void SliderJointComponents::moveComponentToIndex(uint32 srcIndex, uint32 destIndex) {
const Entity entity = mJointEntities[srcIndex];
// Copy the data of the source component to the destination location
new (mJointEntities + destIndex) Entity(mJointEntities[srcIndex]);
mJoints[destIndex] = mJoints[srcIndex];
new (mLocalAnchorPointBody1 + destIndex) Vector3(mLocalAnchorPointBody1[srcIndex]);
new (mLocalAnchorPointBody2 + destIndex) Vector3(mLocalAnchorPointBody2[srcIndex]);
new (mI1 + destIndex) Matrix3x3(mI1[srcIndex]);
new (mI2 + destIndex) Matrix3x3(mI2[srcIndex]);
new (mImpulseTranslation + destIndex) Vector2(mImpulseTranslation[srcIndex]);
new (mImpulseRotation + destIndex) Vector3(mImpulseRotation[srcIndex]);
new (mInverseMassMatrixTranslation + destIndex) Matrix2x2(mInverseMassMatrixTranslation[srcIndex]);
new (mInverseMassMatrixRotation + destIndex) Matrix3x3(mInverseMassMatrixRotation[srcIndex]);
new (mBiasTranslation + destIndex) Vector2(mBiasTranslation[srcIndex]);
new (mBiasRotation + destIndex) Vector3(mBiasRotation[srcIndex]);
new (mInitOrientationDifferenceInv + destIndex) Quaternion(mInitOrientationDifferenceInv[srcIndex]);
new (mSliderAxisBody1 + destIndex) Vector3(mSliderAxisBody1[srcIndex]);
new (mSliderAxisWorld + destIndex) Vector3(mSliderAxisWorld[srcIndex]);
new (mR1 + destIndex) Vector3(mR1[srcIndex]);
new (mR2 + destIndex) Vector3(mR2[srcIndex]);
new (mN1 + destIndex) Vector3(mN1[srcIndex]);
new (mN2 + destIndex) Vector3(mN2[srcIndex]);
mImpulseLowerLimit[destIndex] = mImpulseLowerLimit[srcIndex];
mImpulseUpperLimit[destIndex] = mImpulseUpperLimit[srcIndex];
mImpulseMotor[destIndex] = mImpulseMotor[srcIndex];
mInverseMassMatrixLimit[destIndex] = mInverseMassMatrixLimit[srcIndex];
mInverseMassMatrixMotor[destIndex] = mInverseMassMatrixMotor[srcIndex];
mBLowerLimit[destIndex] = mBLowerLimit[srcIndex];
mBUpperLimit[destIndex] = mBUpperLimit[srcIndex];
mIsLimitEnabled[destIndex] = mIsLimitEnabled[srcIndex];
mIsMotorEnabled[destIndex] = mIsMotorEnabled[srcIndex];
mLowerLimit[destIndex] = mLowerLimit[srcIndex];
mUpperLimit[destIndex] = mUpperLimit[srcIndex];
mIsLowerLimitViolated[destIndex] = mIsLowerLimitViolated[srcIndex];
mIsUpperLimitViolated[destIndex] = mIsUpperLimitViolated[srcIndex];
mMotorSpeed[destIndex] = mMotorSpeed[srcIndex];
mMaxMotorForce[destIndex] = mMaxMotorForce[srcIndex];
new (mR2CrossN1 + destIndex) Vector3(mR2CrossN1[srcIndex]);
new (mR2CrossN2 + destIndex) Vector3(mR2CrossN2[srcIndex]);
new (mR2CrossSliderAxis + destIndex) Vector3(mR2CrossSliderAxis[srcIndex]);
new (mR1PlusUCrossN1 + destIndex) Vector3(mR1PlusUCrossN1[srcIndex]);
new (mR1PlusUCrossN2 + destIndex) Vector3(mR1PlusUCrossN2[srcIndex]);
new (mR1PlusUCrossSliderAxis + destIndex) Vector3(mR1PlusUCrossSliderAxis[srcIndex]);
// Destroy the source component
destroyComponent(srcIndex);
assert(!mMapEntityToComponentIndex.containsKey(entity));
// Update the entity to component index mapping
mMapEntityToComponentIndex.add(Pair<Entity, uint32>(entity, destIndex));
assert(mMapEntityToComponentIndex[mJointEntities[destIndex]] == destIndex);
}
// Swap two components in the array
void SliderJointComponents::swapComponents(uint32 index1, uint32 index2) {
// Copy component 1 data
Entity jointEntity1(mJointEntities[index1]);
SliderJoint* joint1 = mJoints[index1];
Vector3 localAnchorPointBody1(mLocalAnchorPointBody1[index1]);
Vector3 localAnchorPointBody2(mLocalAnchorPointBody2[index1]);
Matrix3x3 i11(mI1[index1]);
Matrix3x3 i21(mI2[index1]);
Vector2 impulseTranslation1(mImpulseTranslation[index1]);
Vector3 impulseRotation1(mImpulseRotation[index1]);
Matrix2x2 inverseMassMatrixTranslation1(mInverseMassMatrixTranslation[index1]);
Matrix3x3 inverseMassMatrixRotation1(mInverseMassMatrixRotation[index1]);
Vector2 biasTranslation1(mBiasTranslation[index1]);
Vector3 biasRotation1(mBiasRotation[index1]);
Quaternion initOrientationDifferenceInv1(mInitOrientationDifferenceInv[index1]);
Vector3 sliderAxisBody1(mSliderAxisBody1[index1]);
Vector3 sliderAxisWorld(mSliderAxisWorld[index1]);
Vector3 r1(mR1[index1]);
Vector3 r2(mR2[index1]);
Vector3 n1(mN1[index1]);
Vector3 n2(mN2[index1]);
decimal impulseLowerLimit(mImpulseLowerLimit[index1]);
decimal impulseUpperLimit(mImpulseUpperLimit[index1]);
decimal impulseMotor(mImpulseMotor[index1]);
decimal inverseMassMatrixLimit(mInverseMassMatrixLimit[index1]);
decimal inverseMassMatrixMotor(mInverseMassMatrixMotor[index1]);
decimal bLowerLimit(mBLowerLimit[index1]);
decimal bUpperLimit(mUpperLimit[index1]);
bool isLimitEnabled(mIsLimitEnabled[index1]);
bool isMotorEnabled(mIsMotorEnabled[index1]);
decimal lowerLimit(mLowerLimit[index1]);
decimal upperLimit(mUpperLimit[index1]);
bool isLowerLimitViolated(mIsLowerLimitViolated[index1]);
bool isUpperLimitViolated(mIsUpperLimitViolated[index1]);
decimal motorSpeed(mMotorSpeed[index1]);
decimal maxMotorForce(mMaxMotorForce[index1]);
Vector3 r2CrossN1(mR2CrossN1[index1]);
Vector3 r2CrossN2(mR2CrossN2[index1]);
Vector3 r2CrossSliderAxis(mR2CrossSliderAxis[index1]);
Vector3 r1PlusUCrossN1(mR1PlusUCrossN1[index1]);
Vector3 r1PlusUCrossN2(mR1PlusUCrossN2[index1]);
Vector3 r1PlusUCrossSliderAxis(mR1PlusUCrossSliderAxis[index1]);
// Destroy component 1
destroyComponent(index1);
moveComponentToIndex(index2, index1);
// Reconstruct component 1 at component 2 location
new (mJointEntities + index2) Entity(jointEntity1);
mJoints[index2] = joint1;
new (mLocalAnchorPointBody1 + index2) Vector3(localAnchorPointBody1);
new (mLocalAnchorPointBody2 + index2) Vector3(localAnchorPointBody2);
new (mI1 + index2) Matrix3x3(i11);
new (mI2 + index2) Matrix3x3(i21);
new (mImpulseTranslation + index2) Vector2(impulseTranslation1);
new (mImpulseRotation + index2) Vector3(impulseRotation1);
new (mInverseMassMatrixTranslation + index2) Matrix2x2(inverseMassMatrixTranslation1);
new (mInverseMassMatrixRotation + index2) Matrix3x3(inverseMassMatrixRotation1);
new (mBiasTranslation + index2) Vector2(biasTranslation1);
new (mBiasRotation + index2) Vector3(biasRotation1);
new (mInitOrientationDifferenceInv + index2) Quaternion(initOrientationDifferenceInv1);
new (mSliderAxisBody1 + index2) Vector3(sliderAxisBody1);
new (mSliderAxisWorld + index2) Vector3(sliderAxisWorld);
new (mR1 + index2) Vector3(r1);
new (mR2 + index2) Vector3(r2);
new (mN1 + index2) Vector3(n1);
new (mN2 + index2) Vector3(n2);
mImpulseLowerLimit[index2] = impulseLowerLimit;
mImpulseUpperLimit[index2] = impulseUpperLimit;
mImpulseMotor[index2] = impulseMotor;
mInverseMassMatrixLimit[index2] = inverseMassMatrixLimit;
mInverseMassMatrixMotor[index2] = inverseMassMatrixMotor;
mBLowerLimit[index2] = bLowerLimit;
mBUpperLimit[index2] = bUpperLimit;
mIsLimitEnabled[index2] = isLimitEnabled;
mIsMotorEnabled[index2] = isMotorEnabled;
mLowerLimit[index2] = lowerLimit;
mUpperLimit[index2] = upperLimit;
mIsLowerLimitViolated[index2] = isLowerLimitViolated;
mIsUpperLimitViolated[index2] = isUpperLimitViolated;
mMotorSpeed[index2] = motorSpeed;
mMaxMotorForce[index2] = maxMotorForce;
new (mR2CrossN1 + index2) Vector3(r2CrossN1);
new (mR2CrossN2 + index2) Vector3(r2CrossN2);
new (mR2CrossSliderAxis + index2) Vector3(r2CrossSliderAxis);
new (mR1PlusUCrossN1 + index2) Vector3(r1PlusUCrossN1);
new (mR1PlusUCrossN2 + index2) Vector3(r1PlusUCrossN2);
new (mR1PlusUCrossSliderAxis + index2) Vector3(r1PlusUCrossSliderAxis);
// Update the entity to component index mapping
mMapEntityToComponentIndex.add(Pair<Entity, uint32>(jointEntity1, index2));
assert(mMapEntityToComponentIndex[mJointEntities[index1]] == index1);
assert(mMapEntityToComponentIndex[mJointEntities[index2]] == index2);
assert(mNbComponents == static_cast<uint32>(mMapEntityToComponentIndex.size()));
}
// Destroy a component at a given index
void SliderJointComponents::destroyComponent(uint32 index) {
Components::destroyComponent(index);
assert(mMapEntityToComponentIndex[mJointEntities[index]] == index);
mMapEntityToComponentIndex.remove(mJointEntities[index]);
mJointEntities[index].~Entity();
mJoints[index] = nullptr;
mLocalAnchorPointBody1[index].~Vector3();
mLocalAnchorPointBody2[index].~Vector3();
mI1[index].~Matrix3x3();
mI2[index].~Matrix3x3();
mImpulseTranslation[index].~Vector2();
mImpulseRotation[index].~Vector3();
mInverseMassMatrixTranslation[index].~Matrix2x2();
mInverseMassMatrixRotation[index].~Matrix3x3();
mBiasTranslation[index].~Vector2();
mBiasRotation[index].~Vector3();
mInitOrientationDifferenceInv[index].~Quaternion();
mSliderAxisBody1[index].~Vector3();
mSliderAxisWorld[index].~Vector3();
mR1[index].~Vector3();
mR2[index].~Vector3();
mN1[index].~Vector3();
mN2[index].~Vector3();
mR2CrossN1[index].~Vector3();
mR2CrossN2[index].~Vector3();
mR2CrossSliderAxis[index].~Vector3();
mR1PlusUCrossN1[index].~Vector3();
mR1PlusUCrossN2[index].~Vector3();
mR1PlusUCrossSliderAxis[index].~Vector3();
}