reactphysics3d/include/reactphysics3d/mathematics/Transform.h

269 lines
11 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2020 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef REACTPHYSICS3D_TRANSFORM_H
#define REACTPHYSICS3D_TRANSFORM_H
// Libraries
#include <reactphysics3d/mathematics/Vector3.h>
#include <reactphysics3d/mathematics/Quaternion.h>
// ReactPhysiscs3D namespace
namespace reactphysics3d {
// Class Transform
/**
* This class represents a position and an orientation in 3D. It can
* also be seen as representing a translation and a rotation.
*/
class Transform {
private :
// -------------------- Attributes -------------------- //
/// Position
Vector3 mPosition;
/// Orientation
Quaternion mOrientation;
public :
// -------------------- Methods -------------------- //
/// Constructor
Transform();
/// Constructor
Transform(const Vector3& position, const Matrix3x3& orientation);
/// Constructor
Transform(const Vector3& position, const Quaternion& orientation);
/// Destructor
~Transform() = default;
/// Copy-constructor
Transform(const Transform& transform);
/// Return the origin of the transform
const Vector3& getPosition() const;
/// Set the origin of the transform
void setPosition(const Vector3& position);
/// Return the orientation quaternion
const Quaternion& getOrientation() const;
/// Set the rotation quaternion
void setOrientation(const Quaternion& orientation);
/// Set the transform to the identity transform
void setToIdentity();
/// Set the transform from an OpenGL transform matrix
void setFromOpenGL(decimal* openglMatrix);
/// Get the OpenGL matrix of the transform
void getOpenGLMatrix(decimal* openglMatrix) const;
/// Return the inverse of the transform
Transform getInverse() const;
/// Return an interpolated transform
static Transform interpolateTransforms(const Transform& oldTransform,
const Transform& newTransform,
decimal interpolationFactor);
/// Return the identity transform
static Transform identity();
/// Return true if it is a valid transform
bool isValid() const;
/// Return the transformed vector
Vector3 operator*(const Vector3& vector) const;
/// Operator of multiplication of a transform with another one
Transform operator*(const Transform& transform2) const;
/// Return true if the two transforms are equal
bool operator==(const Transform& transform2) const;
/// Return true if the two transforms are different
bool operator!=(const Transform& transform2) const;
/// Assignment operator
Transform& operator=(const Transform& transform);
/// Return the string representation
std::string to_string() const;
};
// Constructor
inline Transform::Transform() : mPosition(Vector3(0.0, 0.0, 0.0)), mOrientation(Quaternion::identity()) {
}
// Constructor
inline Transform::Transform(const Vector3& position, const Matrix3x3& orientation)
: mPosition(position), mOrientation(Quaternion(orientation)) {
}
// Constructor
inline Transform::Transform(const Vector3& position, const Quaternion& orientation)
: mPosition(position), mOrientation(orientation) {
}
// Copy-constructor
inline Transform::Transform(const Transform& transform)
: mPosition(transform.mPosition), mOrientation(transform.mOrientation) {
}
// Return the position of the transform
inline const Vector3& Transform::getPosition() const {
return mPosition;
}
// Set the origin of the transform
inline void Transform::setPosition(const Vector3& position) {
mPosition = position;
}
// Return the rotation matrix
inline const Quaternion& Transform::getOrientation() const {
return mOrientation;
}
// Set the rotation matrix of the transform
inline void Transform::setOrientation(const Quaternion& orientation) {
mOrientation = orientation;
}
// Set the transform to the identity transform
inline void Transform::setToIdentity() {
mPosition = Vector3(0.0, 0.0, 0.0);
mOrientation = Quaternion::identity();
}
// Return the inverse of the transform
inline Transform Transform::getInverse() const {
const Quaternion& invQuaternion = mOrientation.getInverse();
return Transform(invQuaternion * (-mPosition), invQuaternion);
}
// Return an interpolated transform
inline Transform Transform::interpolateTransforms(const Transform& oldTransform,
const Transform& newTransform,
decimal interpolationFactor) {
Vector3 interPosition = oldTransform.mPosition * (decimal(1.0) - interpolationFactor) +
newTransform.mPosition * interpolationFactor;
Quaternion interOrientation = Quaternion::slerp(oldTransform.mOrientation,
newTransform.mOrientation,
interpolationFactor);
return Transform(interPosition, interOrientation);
}
// Return the identity transform
inline Transform Transform::identity() {
return Transform(Vector3(0, 0, 0), Quaternion::identity());
}
// Return true if it is a valid transform
inline bool Transform::isValid() const {
return mPosition.isFinite() && mOrientation.isValid();
}
// Return the transformed vector
inline Vector3 Transform::operator*(const Vector3& vector) const {
return (mOrientation * vector) + mPosition;
}
// Operator of multiplication of a transform with another one
inline Transform Transform::operator*(const Transform& transform2) const {
// The following code is equivalent to this
//return Transform(mPosition + mOrientation * transform2.mPosition,
// mOrientation * transform2.mOrientation);
const decimal prodX = mOrientation.w * transform2.mPosition.x + mOrientation.y * transform2.mPosition.z
- mOrientation.z * transform2.mPosition.y;
const decimal prodY = mOrientation.w * transform2.mPosition.y + mOrientation.z * transform2.mPosition.x
- mOrientation.x * transform2.mPosition.z;
const decimal prodZ = mOrientation.w * transform2.mPosition.z + mOrientation.x * transform2.mPosition.y
- mOrientation.y * transform2.mPosition.x;
const decimal prodW = -mOrientation.x * transform2.mPosition.x - mOrientation.y * transform2.mPosition.y
- mOrientation.z * transform2.mPosition.z;
return Transform(Vector3(mPosition.x + mOrientation.w * prodX - prodY * mOrientation.z + prodZ * mOrientation.y - prodW * mOrientation.x,
mPosition.y + mOrientation.w * prodY - prodZ * mOrientation.x + prodX * mOrientation.z - prodW * mOrientation.y,
mPosition.z + mOrientation.w * prodZ - prodX * mOrientation.y + prodY * mOrientation.x - prodW * mOrientation.z),
Quaternion(mOrientation.w * transform2.mOrientation.x + transform2.mOrientation.w * mOrientation.x
+ mOrientation.y * transform2.mOrientation.z - mOrientation.z * transform2.mOrientation.y,
mOrientation.w * transform2.mOrientation.y + transform2.mOrientation.w * mOrientation.y
+ mOrientation.z * transform2.mOrientation.x - mOrientation.x * transform2.mOrientation.z,
mOrientation.w * transform2.mOrientation.z + transform2.mOrientation.w * mOrientation.z
+ mOrientation.x * transform2.mOrientation.y - mOrientation.y * transform2.mOrientation.x,
mOrientation.w * transform2.mOrientation.w - mOrientation.x * transform2.mOrientation.x
- mOrientation.y * transform2.mOrientation.y - mOrientation.z * transform2.mOrientation.z));
}
// Return true if the two transforms are equal
inline bool Transform::operator==(const Transform& transform2) const {
return (mPosition == transform2.mPosition) && (mOrientation == transform2.mOrientation);
}
// Return true if the two transforms are different
inline bool Transform::operator!=(const Transform& transform2) const {
return !(*this == transform2);
}
// Assignment operator
inline Transform& Transform::operator=(const Transform& transform) {
if (&transform != this) {
mPosition = transform.mPosition;
mOrientation = transform.mOrientation;
}
return *this;
}
// Get the string representation
inline std::string Transform::to_string() const {
return "Transform(" + mPosition.to_string() + "," + mOrientation.to_string() + ")";
}
}
#endif