reactphysics3d/include/reactphysics3d/components/FixedJointComponents.h

426 lines
17 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2018 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef REACTPHYSICS3D_FIXED_JOINT_COMPONENTS_H
#define REACTPHYSICS3D_FIXED_JOINT_COMPONENTS_H
// Libraries
#include <reactphysics3d/mathematics/Transform.h>
#include <reactphysics3d/mathematics/Matrix3x3.h>
#include <reactphysics3d/engine/Entity.h>
#include <reactphysics3d/components/Components.h>
#include <reactphysics3d/containers/Map.h>
// ReactPhysics3D namespace
namespace reactphysics3d {
// Class declarations
class MemoryAllocator;
class EntityManager;
class FixedJoint;
enum class JointType;
// Class FixedJointComponents
/**
* This class represent the component of the ECS with data for the FixedJoint.
*/
class FixedJointComponents : public Components {
private:
// -------------------- Attributes -------------------- //
/// Array of joint entities
Entity* mJointEntities;
/// Array of pointers to the joints
FixedJoint** mJoints;
/// Anchor point of body 1 (in local-space coordinates of body 1)
Vector3* mLocalAnchorPointBody1;
/// Anchor point of body 2 (in local-space coordinates of body 2)
Vector3* mLocalAnchorPointBody2;
/// Vector from center of body 2 to anchor point in world-space
Vector3* mR1World;
/// Vector from center of body 2 to anchor point in world-space
Vector3* mR2World;
/// Inertia tensor of body 1 (in world-space coordinates)
Matrix3x3* mI1;
/// Inertia tensor of body 2 (in world-space coordinates)
Matrix3x3* mI2;
/// Accumulated impulse for the 3 translation constraints
Vector3* mImpulseTranslation;
/// Accumulate impulse for the 3 rotation constraints
Vector3* mImpulseRotation;
/// Inverse mass matrix K=JM^-1J^-t of the 3 translation constraints (3x3 matrix)
Matrix3x3* mInverseMassMatrixTranslation;
/// Inverse mass matrix K=JM^-1J^-t of the 3 rotation constraints (3x3 matrix)
Matrix3x3* mInverseMassMatrixRotation;
/// Bias vector for the 3 translation constraints
Vector3* mBiasTranslation;
/// Bias vector for the 3 rotation constraints
Vector3* mBiasRotation;
/// Inverse of the initial orientation difference between the two bodies
Quaternion* mInitOrientationDifferenceInv;
// -------------------- Methods -------------------- //
/// Allocate memory for a given number of components
virtual void allocate(uint32 nbComponentsToAllocate) override;
/// Destroy a component at a given index
virtual void destroyComponent(uint32 index) override;
/// Move a component from a source to a destination index in the components array
virtual void moveComponentToIndex(uint32 srcIndex, uint32 destIndex) override;
/// Swap two components in the array
virtual void swapComponents(uint32 index1, uint32 index2) override;
public:
/// Structure for the data of a transform component
struct FixedJointComponent {
/// Constructor
FixedJointComponent() {
}
};
// -------------------- Methods -------------------- //
/// Constructor
FixedJointComponents(MemoryAllocator& allocator);
/// Destructor
virtual ~FixedJointComponents() override = default;
/// Add a component
void addComponent(Entity jointEntity, bool isSleeping, const FixedJointComponent& component);
/// Return a pointer to a given joint
FixedJoint* getJoint(Entity jointEntity) const;
/// Set the joint pointer to a given joint
void setJoint(Entity jointEntity, FixedJoint* joint) const;
/// Return the local anchor point of body 1 for a given joint
const Vector3& getLocalAnchorPointBody1(Entity jointEntity) const;
/// Set the local anchor point of body 1 for a given joint
void setLocalAnchorPointBody1(Entity jointEntity, const Vector3& localAnchorPointBody1);
/// Return the local anchor point of body 2 for a given joint
const Vector3& getLocalAnchorPointBody2(Entity jointEntity) const;
/// Set the local anchor point of body 2 for a given joint
void setLocalAnchorPointBody2(Entity jointEntity, const Vector3& localAnchoirPointBody2);
/// Return the vector from center of body 1 to anchor point in world-space
const Vector3& getR1World(Entity jointEntity) const;
/// Set the vector from center of body 1 to anchor point in world-space
void setR1World(Entity jointEntity, const Vector3& r1World);
/// Return the vector from center of body 2 to anchor point in world-space
const Vector3& getR2World(Entity jointEntity) const;
/// Set the vector from center of body 2 to anchor point in world-space
void setR2World(Entity jointEntity, const Vector3& r2World);
/// Return the inertia tensor of body 1 (in world-space coordinates)
const Matrix3x3& getI1(Entity jointEntity) const;
/// Set the inertia tensor of body 1 (in world-space coordinates)
void setI1(Entity jointEntity, const Matrix3x3& i1);
/// Return the inertia tensor of body 2 (in world-space coordinates)
const Matrix3x3& getI2(Entity jointEntity) const;
/// Set the inertia tensor of body 2 (in world-space coordinates)
void setI2(Entity jointEntity, const Matrix3x3& i2);
/// Return the translation impulse
Vector3& getImpulseTranslation(Entity jointEntity);
/// Set the translation impulse
void setImpulseTranslation(Entity jointEntity, const Vector3& impulseTranslation);
/// Return the translation impulse
Vector3& getImpulseRotation(Entity jointEntity);
/// Set the translation impulse
void setImpulseRotation(Entity jointEntity, const Vector3& impulseTranslation);
/// Return the translation inverse mass matrix of the constraint
Matrix3x3& getInverseMassMatrixTranslation(Entity jointEntity);
/// Set the translation inverse mass matrix of the constraint
void setInverseMassMatrixTranslation(Entity jointEntity, const Matrix3x3& inverseMassMatrix);
/// Return the rotation inverse mass matrix of the constraint
Matrix3x3& getInverseMassMatrixRotation(Entity jointEntity);
/// Set the rotation inverse mass matrix of the constraint
void setInverseMassMatrixRotation(Entity jointEntity, const Matrix3x3& inverseMassMatrix);
/// Return the translation bias
Vector3& getBiasTranslation(Entity jointEntity);
/// Set the translation impulse
void setBiasTranslation(Entity jointEntity, const Vector3& impulseTranslation);
/// Return the rotation bias
Vector3& getBiasRotation(Entity jointEntity);
/// Set the rotation impulse
void setBiasRotation(Entity jointEntity, const Vector3 &impulseRotation);
/// Return the initial orientation difference
Quaternion& getInitOrientationDifferenceInv(Entity jointEntity);
/// Set the rotation impulse
void setInitOrientationDifferenceInv(Entity jointEntity, const Quaternion& initOrientationDifferenceInv);
// -------------------- Friendship -------------------- //
friend class BroadPhaseSystem;
friend class SolveFixedJointSystem;
};
// Return a pointer to a given joint
inline FixedJoint* FixedJointComponents::getJoint(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mJoints[mMapEntityToComponentIndex[jointEntity]];
}
// Set the joint pointer to a given joint
inline void FixedJointComponents::setJoint(Entity jointEntity, FixedJoint* joint) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mJoints[mMapEntityToComponentIndex[jointEntity]] = joint;
}
// Return the local anchor point of body 1 for a given joint
inline const Vector3& FixedJointComponents::getLocalAnchorPointBody1(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mLocalAnchorPointBody1[mMapEntityToComponentIndex[jointEntity]];
}
// Set the local anchor point of body 1 for a given joint
inline void FixedJointComponents::setLocalAnchorPointBody1(Entity jointEntity, const Vector3& localAnchorPointBody1) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mLocalAnchorPointBody1[mMapEntityToComponentIndex[jointEntity]] = localAnchorPointBody1;
}
// Return the local anchor point of body 2 for a given joint
inline const Vector3& FixedJointComponents::getLocalAnchorPointBody2(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mLocalAnchorPointBody2[mMapEntityToComponentIndex[jointEntity]];
}
// Set the local anchor point of body 2 for a given joint
inline void FixedJointComponents::setLocalAnchorPointBody2(Entity jointEntity, const Vector3& localAnchorPointBody2) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mLocalAnchorPointBody2[mMapEntityToComponentIndex[jointEntity]] = localAnchorPointBody2;
}
// Return the vector from center of body 1 to anchor point in world-space
inline const Vector3& FixedJointComponents::getR1World(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mR1World[mMapEntityToComponentIndex[jointEntity]];
}
// Set the vector from center of body 1 to anchor point in world-space
inline void FixedJointComponents::setR1World(Entity jointEntity, const Vector3& r1World) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mR1World[mMapEntityToComponentIndex[jointEntity]] = r1World;
}
// Return the vector from center of body 2 to anchor point in world-space
inline const Vector3& FixedJointComponents::getR2World(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mR2World[mMapEntityToComponentIndex[jointEntity]];
}
// Set the vector from center of body 2 to anchor point in world-space
inline void FixedJointComponents::setR2World(Entity jointEntity, const Vector3& r2World) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mR2World[mMapEntityToComponentIndex[jointEntity]] = r2World;
}
// Return the inertia tensor of body 1 (in world-space coordinates)
inline const Matrix3x3& FixedJointComponents::getI1(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mI1[mMapEntityToComponentIndex[jointEntity]];
}
// Set the inertia tensor of body 1 (in world-space coordinates)
inline void FixedJointComponents::setI1(Entity jointEntity, const Matrix3x3& i1) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mI1[mMapEntityToComponentIndex[jointEntity]] = i1;
}
// Return the inertia tensor of body 2 (in world-space coordinates)
inline const Matrix3x3& FixedJointComponents::getI2(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mI2[mMapEntityToComponentIndex[jointEntity]];
}
// Set the inertia tensor of body 2 (in world-space coordinates)
inline void FixedJointComponents::setI2(Entity jointEntity, const Matrix3x3& i2) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mI2[mMapEntityToComponentIndex[jointEntity]] = i2;
}
// Return the translation impulse
inline Vector3& FixedJointComponents::getImpulseTranslation(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mImpulseTranslation[mMapEntityToComponentIndex[jointEntity]];
}
// Set the translation impulse
inline void FixedJointComponents::setImpulseTranslation(Entity jointEntity, const Vector3& impulseTranslation) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mImpulseTranslation[mMapEntityToComponentIndex[jointEntity]] = impulseTranslation;
}
// Return the translation impulse
inline Vector3& FixedJointComponents::getImpulseRotation(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mImpulseRotation[mMapEntityToComponentIndex[jointEntity]];
}
// Set the translation impulse
inline void FixedJointComponents::setImpulseRotation(Entity jointEntity, const Vector3& impulseTranslation) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mImpulseRotation[mMapEntityToComponentIndex[jointEntity]] = impulseTranslation;
}
// Return the translation inverse mass matrix of the constraint
inline Matrix3x3& FixedJointComponents::getInverseMassMatrixTranslation(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mInverseMassMatrixTranslation[mMapEntityToComponentIndex[jointEntity]];
}
// Set the translation inverse mass matrix of the constraint
inline void FixedJointComponents::setInverseMassMatrixTranslation(Entity jointEntity, const Matrix3x3& inverseMassMatrix) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mInverseMassMatrixTranslation[mMapEntityToComponentIndex[jointEntity]] = inverseMassMatrix;
}
// Return the rotation inverse mass matrix of the constraint
inline Matrix3x3& FixedJointComponents::getInverseMassMatrixRotation(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mInverseMassMatrixRotation[mMapEntityToComponentIndex[jointEntity]];
}
// Set the rotation inverse mass matrix of the constraint
inline void FixedJointComponents::setInverseMassMatrixRotation(Entity jointEntity, const Matrix3x3& inverseMassMatrix) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mInverseMassMatrixRotation[mMapEntityToComponentIndex[jointEntity]] = inverseMassMatrix;
}
// Return the translation bias
inline Vector3& FixedJointComponents::getBiasTranslation(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mBiasTranslation[mMapEntityToComponentIndex[jointEntity]];
}
// Set the translation impulse
inline void FixedJointComponents::setBiasTranslation(Entity jointEntity, const Vector3 &impulseTranslation) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mBiasTranslation[mMapEntityToComponentIndex[jointEntity]] = impulseTranslation;
}
// Return the rotation bias
inline Vector3& FixedJointComponents::getBiasRotation(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mBiasRotation[mMapEntityToComponentIndex[jointEntity]];
}
// Set the rotation impulse
inline void FixedJointComponents::setBiasRotation(Entity jointEntity, const Vector3& impulseRotation) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mBiasRotation[mMapEntityToComponentIndex[jointEntity]] = impulseRotation;
}
// Return the initial orientation difference
inline Quaternion& FixedJointComponents::getInitOrientationDifferenceInv(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mInitOrientationDifferenceInv[mMapEntityToComponentIndex[jointEntity]];
}
// Set the rotation impulse
inline void FixedJointComponents::setInitOrientationDifferenceInv(Entity jointEntity, const Quaternion& initOrientationDifferenceInv) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mInitOrientationDifferenceInv[mMapEntityToComponentIndex[jointEntity]] = initOrientationDifferenceInv;
}
}
#endif