reactphysics3d/include/reactphysics3d/components/HingeJointComponents.h

900 lines
37 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2018 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef REACTPHYSICS3D_HINGE_JOINT_COMPONENTS_H
#define REACTPHYSICS3D_HINGE_JOINT_COMPONENTS_H
// Libraries
#include <reactphysics3d/mathematics/Transform.h>
#include <reactphysics3d/mathematics/Matrix3x3.h>
#include <reactphysics3d/mathematics/Matrix2x2.h>
#include <reactphysics3d/engine/Entity.h>
#include <reactphysics3d/components/Components.h>
#include <reactphysics3d/containers/Map.h>
// ReactPhysics3D namespace
namespace reactphysics3d {
// Class declarations
class MemoryAllocator;
class EntityManager;
class HingeJoint;
enum class JointType;
// Class HingeJointComponents
/**
* This class represent the component of the ECS with data for the HingeJoint.
*/
class HingeJointComponents : public Components {
private:
// -------------------- Attributes -------------------- //
/// Array of joint entities
Entity* mJointEntities;
/// Array of pointers to the joints
HingeJoint** mJoints;
/// Anchor point of body 1 (in local-space coordinates of body 1)
Vector3* mLocalAnchorPointBody1;
/// Anchor point of body 2 (in local-space coordinates of body 2)
Vector3* mLocalAnchorPointBody2;
/// Vector from center of body 2 to anchor point in world-space
Vector3* mR1World;
/// Vector from center of body 2 to anchor point in world-space
Vector3* mR2World;
/// Inertia tensor of body 1 (in world-space coordinates)
Matrix3x3* mI1;
/// Inertia tensor of body 2 (in world-space coordinates)
Matrix3x3* mI2;
/// Accumulated impulse for the 3 translation constraints
Vector3* mImpulseTranslation;
/// Accumulate impulse for the 3 rotation constraints
Vector2* mImpulseRotation;
/// Inverse mass matrix K=JM^-1J^-t of the 3 translation constraints (3x3 matrix)
Matrix3x3* mInverseMassMatrixTranslation;
/// Inverse mass matrix K=JM^-1J^-t of the 3 rotation constraints (3x3 matrix)
Matrix2x2* mInverseMassMatrixRotation;
/// Bias vector for the 3 translation constraints
Vector3* mBiasTranslation;
/// Bias vector for the 3 rotation constraints
Vector2* mBiasRotation;
/// Inverse of the initial orientation difference between the two bodies
Quaternion* mInitOrientationDifferenceInv;
/// Hinge rotation axis (in local-space coordinates of body 1)
Vector3* mHingeLocalAxisBody1;
/// Hinge rotation axis (in local-space coordiantes of body 2)
Vector3* mHingeLocalAxisBody2;
/// Hinge rotation axis (in world-space coordinates) computed from body 1
Vector3* mA1;
/// Cross product of vector b2 and a1
Vector3* mB2CrossA1;
/// Cross product of vector c2 and a1;
Vector3* mC2CrossA1;
/// Accumulated impulse for the lower limit constraint
decimal* mImpulseLowerLimit;
/// Accumulated impulse for the upper limit constraint
decimal* mImpulseUpperLimit;
/// Accumulated impulse for the motor constraint;
decimal* mImpulseMotor;
/// Inverse of mass matrix K=JM^-1J^t for the limits and motor constraints (1x1 matrix)
decimal* mInverseMassMatrixLimitMotor;
/// Inverse of mass matrix K=JM^-1J^t for the motor
decimal* mInverseMassMatrixMotor;
/// Bias of the lower limit constraint
decimal* mBLowerLimit;
/// Bias of the upper limit constraint
decimal* mBUpperLimit;
/// True if the joint limits are enabled
bool* mIsLimitEnabled;
/// True if the motor of the joint in enabled
bool* mIsMotorEnabled;
/// Lower limit (minimum allowed rotation angle in radian)
decimal* mLowerLimit;
/// Upper limit (maximum translation distance)
decimal* mUpperLimit;
/// True if the lower limit is violated
bool* mIsLowerLimitViolated;
/// True if the upper limit is violated
bool* mIsUpperLimitViolated;
/// Motor speed (in rad/s)
decimal* mMotorSpeed;
/// Maximum motor torque (in Newtons) that can be applied to reach to desired motor speed
decimal* mMaxMotorTorque;
// -------------------- Methods -------------------- //
/// Allocate memory for a given number of components
virtual void allocate(uint32 nbComponentsToAllocate) override;
/// Destroy a component at a given index
virtual void destroyComponent(uint32 index) override;
/// Move a component from a source to a destination index in the components array
virtual void moveComponentToIndex(uint32 srcIndex, uint32 destIndex) override;
/// Swap two components in the array
virtual void swapComponents(uint32 index1, uint32 index2) override;
public:
/// Structure for the data of a transform component
struct HingeJointComponent {
bool isLimitEnabled;
bool isMotorEnabled;
decimal lowerLimit;
decimal upperLimit;
decimal motorSpeed;
decimal maxMotorTorque;
/// Constructor
HingeJointComponent(bool isLimitEnabled, bool isMotorEnabled, decimal lowerLimit, decimal upperLimit,
decimal motorSpeed, decimal maxMotorTorque)
: isLimitEnabled(isLimitEnabled), isMotorEnabled(isMotorEnabled), lowerLimit(lowerLimit), upperLimit(upperLimit),
motorSpeed(motorSpeed), maxMotorTorque(maxMotorTorque) {
}
};
// -------------------- Methods -------------------- //
/// Constructor
HingeJointComponents(MemoryAllocator& allocator);
/// Destructor
virtual ~HingeJointComponents() override = default;
/// Add a component
void addComponent(Entity jointEntity, bool isSleeping, const HingeJointComponent& component);
/// Return a pointer to a given joint
HingeJoint* getJoint(Entity jointEntity) const;
/// Set the joint pointer to a given joint
void setJoint(Entity jointEntity, HingeJoint* joint) const;
/// Return the local anchor point of body 1 for a given joint
const Vector3& getLocalAnchorPointBody1(Entity jointEntity) const;
/// Set the local anchor point of body 1 for a given joint
void setLocalAnchorPointBody1(Entity jointEntity, const Vector3& localAnchoirPointBody1);
/// Return the local anchor point of body 2 for a given joint
const Vector3& getLocalAnchorPointBody2(Entity jointEntity) const;
/// Set the local anchor point of body 2 for a given joint
void setLocalAnchorPointBody2(Entity jointEntity, const Vector3& localAnchoirPointBody2);
/// Return the vector from center of body 1 to anchor point in world-space
const Vector3& getR1World(Entity jointEntity) const;
/// Set the vector from center of body 1 to anchor point in world-space
void setR1World(Entity jointEntity, const Vector3& r1World);
/// Return the vector from center of body 2 to anchor point in world-space
const Vector3& getR2World(Entity jointEntity) const;
/// Set the vector from center of body 2 to anchor point in world-space
void setR2World(Entity jointEntity, const Vector3& r2World);
/// Return the inertia tensor of body 1 (in world-space coordinates)
const Matrix3x3& getI1(Entity jointEntity) const;
/// Set the inertia tensor of body 1 (in world-space coordinates)
void setI1(Entity jointEntity, const Matrix3x3& i1);
/// Return the inertia tensor of body 2 (in world-space coordinates)
const Matrix3x3& getI2(Entity jointEntity) const;
/// Set the inertia tensor of body 2 (in world-space coordinates)
void setI2(Entity jointEntity, const Matrix3x3& i2);
/// Return the translation impulse
Vector3& getImpulseTranslation(Entity jointEntity);
/// Set the translation impulse
void setImpulseTranslation(Entity jointEntity, const Vector3& impulseTranslation);
/// Return the translation impulse
Vector2& getImpulseRotation(Entity jointEntity);
/// Set the translation impulse
void setImpulseRotation(Entity jointEntity, const Vector2& impulseTranslation);
/// Return the translation inverse mass matrix of the constraint
Matrix3x3& getInverseMassMatrixTranslation(Entity jointEntity);
/// Set the translation inverse mass matrix of the constraint
void setInverseMassMatrixTranslation(Entity jointEntity, const Matrix3x3& inverseMassMatrix);
/// Return the rotation inverse mass matrix of the constraint
Matrix2x2& getInverseMassMatrixRotation(Entity jointEntity);
/// Set the rotation inverse mass matrix of the constraint
void setInverseMassMatrixRotation(Entity jointEntity, const Matrix2x2& inverseMassMatrix);
/// Return the translation bias
Vector3& getBiasTranslation(Entity jointEntity);
/// Set the translation impulse
void setBiasTranslation(Entity jointEntity, const Vector3& impulseTranslation);
/// Return the rotation bias
Vector2& getBiasRotation(Entity jointEntity);
/// Set the rotation impulse
void setBiasRotation(Entity jointEntity, const Vector2& impulseRotation);
/// Return the initial orientation difference
Quaternion& getInitOrientationDifferenceInv(Entity jointEntity);
/// Set the rotation impulse
void setInitOrientationDifferenceInv(Entity jointEntity, const Quaternion& initOrientationDifferenceInv);
/// Return the hinge rotation axis (in local-space coordinates of body 1)
Vector3& getHingeLocalAxisBody1(Entity jointEntity);
/// Set the hinge rotation axis (in local-space coordinates of body 1)
void setHingeLocalAxisBody1(Entity jointEntity, const Vector3& hingeLocalAxisBody1);
/// Return the hinge rotation axis (in local-space coordiantes of body 2)
Vector3& getHingeLocalAxisBody2(Entity jointEntity);
/// Set the hinge rotation axis (in local-space coordiantes of body 2)
void setHingeLocalAxisBody2(Entity jointEntity, const Vector3& hingeLocalAxisBody2);
/// Return the hinge rotation axis (in world-space coordinates) computed from body 1
Vector3& getA1(Entity jointEntity);
/// Set the hinge rotation axis (in world-space coordinates) computed from body 1
void setA1(Entity jointEntity, const Vector3& a1);
/// Return the cross product of vector b2 and a1
Vector3& getB2CrossA1(Entity jointEntity);
/// Set the cross product of vector b2 and a1
void setB2CrossA1(Entity jointEntity, const Vector3& b2CrossA1);
/// Return the cross product of vector c2 and a1;
Vector3& getC2CrossA1(Entity jointEntity);
/// Set the cross product of vector c2 and a1;
void setC2CrossA1(Entity jointEntity, const Vector3& c2CrossA1);
/// Return the accumulated impulse for the lower limit constraint
decimal getImpulseLowerLimit(Entity jointEntity) const;
/// Set the accumulated impulse for the lower limit constraint
void setImpulseLowerLimit(Entity jointEntity, decimal impulseLowerLimit);
/// Return the accumulated impulse for the upper limit constraint
decimal getImpulseUpperLimit(Entity jointEntity) const;
/// Set the accumulated impulse for the upper limit constraint
void setImpulseUpperLimit(Entity jointEntity, decimal impulseUpperLimit) const;
/// Return the accumulated impulse for the motor constraint;
decimal getImpulseMotor(Entity jointEntity) const;
/// Set the accumulated impulse for the motor constraint;
void setImpulseMotor(Entity jointEntity, decimal impulseMotor);
/// Return the inverse of mass matrix K=JM^-1J^t for the limits and motor constraints (1x1 matrix)
decimal getInverseMassMatrixLimitMotor(Entity jointEntity) const;
/// Set the inverse of mass matrix K=JM^-1J^t for the limits and motor constraints (1x1 matrix)
void setInverseMassMatrixLimitMotor(Entity jointEntity, decimal inverseMassMatrixLimitMotor);
/// Return the inverse of mass matrix K=JM^-1J^t for the motor
decimal getInverseMassMatrixMotor(Entity jointEntity);
/// Set the inverse of mass matrix K=JM^-1J^t for the motor
void setInverseMassMatrixMotor(Entity jointEntity, decimal inverseMassMatrixMotor);
/// Return the bias of the lower limit constraint
decimal getBLowerLimit(Entity jointEntity) const;
/// Set the bias of the lower limit constraint
void setBLowerLimit(Entity jointEntity, decimal bLowerLimit) const;
/// Return the bias of the upper limit constraint
decimal getBUpperLimit(Entity jointEntity) const;
/// Set the bias of the upper limit constraint
void setBUpperLimit(Entity jointEntity, decimal bUpperLimit);
/// Return true if the joint limits are enabled
bool getIsLimitEnabled(Entity jointEntity) const;
/// Set to true if the joint limits are enabled
void setIsLimitEnabled(Entity jointEntity, bool isLimitEnabled);
/// Return true if the motor of the joint in enabled
bool getIsMotorEnabled(Entity jointEntity) const;
/// Set to true if the motor of the joint in enabled
void setIsMotorEnabled(Entity jointEntity, bool isMotorEnabled) const;
/// Return the Lower limit (minimum allowed rotation angle in radian)
decimal getLowerLimit(Entity jointEntity) const;
/// Set the Lower limit (minimum allowed rotation angle in radian)
void setLowerLimit(Entity jointEntity, decimal lowerLimit) const;
/// Return the upper limit (maximum translation distance)
decimal getUpperLimit(Entity jointEntity) const;
/// Set the upper limit (maximum translation distance)
void setUpperLimit(Entity jointEntity, decimal upperLimit);
/// Return true if the lower limit is violated
bool getIsLowerLimitViolated(Entity jointEntity) const;
/// Set to true if the lower limit is violated
void setIsLowerLimitViolated(Entity jointEntity, bool isLowerLimitViolated);
/// Return true if the upper limit is violated
bool getIsUpperLimitViolated(Entity jointEntity) const;
/// Set to true if the upper limit is violated
void setIsUpperLimitViolated(Entity jointEntity, bool isUpperLimitViolated) const;
/// Return the motor speed (in rad/s)
decimal getMotorSpeed(Entity jointEntity) const;
/// Set the motor speed (in rad/s)
void setMotorSpeed(Entity jointEntity, decimal motorSpeed);
/// Return the maximum motor torque (in Newtons) that can be applied to reach to desired motor speed
decimal getMaxMotorTorque(Entity jointEntity) const;
/// Set the maximum motor torque (in Newtons) that can be applied to reach to desired motor speed
void setMaxMotorTorque(Entity jointEntity, decimal maxMotorTorque);
// -------------------- Friendship -------------------- //
friend class BroadPhaseSystem;
friend class SolveHingeJointSystem;
};
// Return a pointer to a given joint
inline HingeJoint* HingeJointComponents::getJoint(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mJoints[mMapEntityToComponentIndex[jointEntity]];
}
// Set the joint pointer to a given joint
inline void HingeJointComponents::setJoint(Entity jointEntity, HingeJoint* joint) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mJoints[mMapEntityToComponentIndex[jointEntity]] = joint;
}
// Return the local anchor point of body 1 for a given joint
inline const Vector3& HingeJointComponents::getLocalAnchorPointBody1(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mLocalAnchorPointBody1[mMapEntityToComponentIndex[jointEntity]];
}
// Set the local anchor point of body 1 for a given joint
inline void HingeJointComponents::setLocalAnchorPointBody1(Entity jointEntity, const Vector3& localAnchoirPointBody1) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mLocalAnchorPointBody1[mMapEntityToComponentIndex[jointEntity]] = localAnchoirPointBody1;
}
// Return the local anchor point of body 2 for a given joint
inline const Vector3& HingeJointComponents::getLocalAnchorPointBody2(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mLocalAnchorPointBody2[mMapEntityToComponentIndex[jointEntity]];
}
// Set the local anchor point of body 2 for a given joint
inline void HingeJointComponents::setLocalAnchorPointBody2(Entity jointEntity, const Vector3& localAnchoirPointBody2) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mLocalAnchorPointBody2[mMapEntityToComponentIndex[jointEntity]] = localAnchoirPointBody2;
}
// Return the vector from center of body 1 to anchor point in world-space
inline const Vector3& HingeJointComponents::getR1World(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mR1World[mMapEntityToComponentIndex[jointEntity]];
}
// Set the vector from center of body 1 to anchor point in world-space
inline void HingeJointComponents::setR1World(Entity jointEntity, const Vector3& r1World) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mR1World[mMapEntityToComponentIndex[jointEntity]] = r1World;
}
// Return the vector from center of body 2 to anchor point in world-space
inline const Vector3& HingeJointComponents::getR2World(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mR2World[mMapEntityToComponentIndex[jointEntity]];
}
// Set the vector from center of body 2 to anchor point in world-space
inline void HingeJointComponents::setR2World(Entity jointEntity, const Vector3& r2World) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mR2World[mMapEntityToComponentIndex[jointEntity]] = r2World;
}
// Return the inertia tensor of body 1 (in world-space coordinates)
inline const Matrix3x3& HingeJointComponents::getI1(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mI1[mMapEntityToComponentIndex[jointEntity]];
}
// Set the inertia tensor of body 1 (in world-space coordinates)
inline void HingeJointComponents::setI1(Entity jointEntity, const Matrix3x3& i1) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mI1[mMapEntityToComponentIndex[jointEntity]] = i1;
}
// Return the inertia tensor of body 2 (in world-space coordinates)
inline const Matrix3x3& HingeJointComponents::getI2(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mI2[mMapEntityToComponentIndex[jointEntity]];
}
// Set the inertia tensor of body 2 (in world-space coordinates)
inline void HingeJointComponents::setI2(Entity jointEntity, const Matrix3x3& i2) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mI2[mMapEntityToComponentIndex[jointEntity]] = i2;
}
// Return the translation impulse
inline Vector3& HingeJointComponents::getImpulseTranslation(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mImpulseTranslation[mMapEntityToComponentIndex[jointEntity]];
}
// Set the translation impulse
inline void HingeJointComponents::setImpulseTranslation(Entity jointEntity, const Vector3& impulseTranslation) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mImpulseTranslation[mMapEntityToComponentIndex[jointEntity]] = impulseTranslation;
}
// Return the translation impulse
inline Vector2& HingeJointComponents::getImpulseRotation(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mImpulseRotation[mMapEntityToComponentIndex[jointEntity]];
}
// Set the translation impulse
inline void HingeJointComponents::setImpulseRotation(Entity jointEntity, const Vector2& impulseTranslation) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mImpulseRotation[mMapEntityToComponentIndex[jointEntity]] = impulseTranslation;
}
// Return the translation inverse mass matrix of the constraint
inline Matrix3x3& HingeJointComponents::getInverseMassMatrixTranslation(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mInverseMassMatrixTranslation[mMapEntityToComponentIndex[jointEntity]];
}
// Set the translation inverse mass matrix of the constraint
inline void HingeJointComponents::setInverseMassMatrixTranslation(Entity jointEntity, const Matrix3x3& inverseMassMatrix) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mInverseMassMatrixTranslation[mMapEntityToComponentIndex[jointEntity]] = inverseMassMatrix;
}
// Return the rotation inverse mass matrix of the constraint
inline Matrix2x2& HingeJointComponents::getInverseMassMatrixRotation(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mInverseMassMatrixRotation[mMapEntityToComponentIndex[jointEntity]];
}
// Set the rotation inverse mass matrix of the constraint
inline void HingeJointComponents::setInverseMassMatrixRotation(Entity jointEntity, const Matrix2x2& inverseMassMatrix) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mInverseMassMatrixRotation[mMapEntityToComponentIndex[jointEntity]] = inverseMassMatrix;
}
// Return the translation bias
inline Vector3& HingeJointComponents::getBiasTranslation(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mBiasTranslation[mMapEntityToComponentIndex[jointEntity]];
}
// Set the translation impulse
inline void HingeJointComponents::setBiasTranslation(Entity jointEntity, const Vector3 &impulseTranslation) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mBiasTranslation[mMapEntityToComponentIndex[jointEntity]] = impulseTranslation;
}
// Return the rotation bias
inline Vector2 &HingeJointComponents::getBiasRotation(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mBiasRotation[mMapEntityToComponentIndex[jointEntity]];
}
// Set the rotation impulse
inline void HingeJointComponents::setBiasRotation(Entity jointEntity, const Vector2& impulseRotation) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mBiasRotation[mMapEntityToComponentIndex[jointEntity]] = impulseRotation;
}
// Return the initial orientation difference
inline Quaternion& HingeJointComponents::getInitOrientationDifferenceInv(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mInitOrientationDifferenceInv[mMapEntityToComponentIndex[jointEntity]];
}
// Set the rotation impulse
inline void HingeJointComponents::setInitOrientationDifferenceInv(Entity jointEntity, const Quaternion& initOrientationDifferenceInv) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mInitOrientationDifferenceInv[mMapEntityToComponentIndex[jointEntity]] = initOrientationDifferenceInv;
}
// Return the hinge rotation axis (in local-space coordinates of body 1)
inline Vector3& HingeJointComponents::getHingeLocalAxisBody1(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mHingeLocalAxisBody1[mMapEntityToComponentIndex[jointEntity]];
}
// Set the hinge rotation axis (in local-space coordinates of body 1)
inline void HingeJointComponents::setHingeLocalAxisBody1(Entity jointEntity, const Vector3& hingeLocalAxisBody1) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mHingeLocalAxisBody1[mMapEntityToComponentIndex[jointEntity]] = hingeLocalAxisBody1;
}
// Return the hinge rotation axis (in local-space coordiantes of body 2)
inline Vector3& HingeJointComponents::getHingeLocalAxisBody2(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mHingeLocalAxisBody2[mMapEntityToComponentIndex[jointEntity]];
}
// Set the hinge rotation axis (in local-space coordiantes of body 2)
inline void HingeJointComponents::setHingeLocalAxisBody2(Entity jointEntity, const Vector3& hingeLocalAxisBody2) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mHingeLocalAxisBody2[mMapEntityToComponentIndex[jointEntity]] = hingeLocalAxisBody2;
}
// Return the hinge rotation axis (in world-space coordinates) computed from body 1
inline Vector3& HingeJointComponents::getA1(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mA1[mMapEntityToComponentIndex[jointEntity]];
}
// Set the hinge rotation axis (in world-space coordinates) computed from body 1
inline void HingeJointComponents::setA1(Entity jointEntity, const Vector3& a1) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mA1[mMapEntityToComponentIndex[jointEntity]] = a1;
}
// Return the cross product of vector b2 and a1
inline Vector3& HingeJointComponents::getB2CrossA1(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mB2CrossA1[mMapEntityToComponentIndex[jointEntity]];
}
// Set the cross product of vector b2 and a1
inline void HingeJointComponents::setB2CrossA1(Entity jointEntity, const Vector3& b2CrossA1) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mB2CrossA1[mMapEntityToComponentIndex[jointEntity]] = b2CrossA1;
}
// Return the cross product of vector c2 and a1;
inline Vector3& HingeJointComponents::getC2CrossA1(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mC2CrossA1[mMapEntityToComponentIndex[jointEntity]];
}
// Set the cross product of vector c2 and a1;
inline void HingeJointComponents::setC2CrossA1(Entity jointEntity, const Vector3& c2CrossA1) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mC2CrossA1[mMapEntityToComponentIndex[jointEntity]] = c2CrossA1;
}
// Return the accumulated impulse for the lower limit constraint
inline decimal HingeJointComponents::getImpulseLowerLimit(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mImpulseLowerLimit[mMapEntityToComponentIndex[jointEntity]];
}
// Set the accumulated impulse for the lower limit constraint
inline void HingeJointComponents::setImpulseLowerLimit(Entity jointEntity, decimal impulseLowerLimit) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mImpulseLowerLimit[mMapEntityToComponentIndex[jointEntity]] = impulseLowerLimit;
}
// Return the accumulated impulse for the upper limit constraint
inline decimal HingeJointComponents::getImpulseUpperLimit(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mImpulseUpperLimit[mMapEntityToComponentIndex[jointEntity]];
}
// Set the accumulated impulse for the upper limit constraint
inline void HingeJointComponents::setImpulseUpperLimit(Entity jointEntity, decimal impulseUpperLimit) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mImpulseUpperLimit[mMapEntityToComponentIndex[jointEntity]] = impulseUpperLimit;
}
// Return the accumulated impulse for the motor constraint;
inline decimal HingeJointComponents::getImpulseMotor(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mImpulseMotor[mMapEntityToComponentIndex[jointEntity]];
}
// Set the accumulated impulse for the motor constraint;
inline void HingeJointComponents::setImpulseMotor(Entity jointEntity, decimal impulseMotor) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mImpulseMotor[mMapEntityToComponentIndex[jointEntity]] = impulseMotor;
}
// Return the inverse of mass matrix K=JM^-1J^t for the limits and motor constraints (1x1 matrix)
inline decimal HingeJointComponents::getInverseMassMatrixLimitMotor(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mInverseMassMatrixLimitMotor[mMapEntityToComponentIndex[jointEntity]];
}
// Set the inverse of mass matrix K=JM^-1J^t for the limits and motor constraints (1x1 matrix)
inline void HingeJointComponents::setInverseMassMatrixLimitMotor(Entity jointEntity, decimal inverseMassMatrixLimitMotor) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mInverseMassMatrixLimitMotor[mMapEntityToComponentIndex[jointEntity]] = inverseMassMatrixLimitMotor;
}
// Return the inverse of mass matrix K=JM^-1J^t for the motor
inline decimal HingeJointComponents::getInverseMassMatrixMotor(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mInverseMassMatrixMotor[mMapEntityToComponentIndex[jointEntity]];
}
// Return the inverse of mass matrix K=JM^-1J^t for the motor
inline void HingeJointComponents::setInverseMassMatrixMotor(Entity jointEntity, decimal inverseMassMatrixMotor) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mInverseMassMatrixMotor[mMapEntityToComponentIndex[jointEntity]] = inverseMassMatrixMotor;
}
// Return the bias of the lower limit constraint
inline decimal HingeJointComponents::getBLowerLimit(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mBLowerLimit[mMapEntityToComponentIndex[jointEntity]];
}
// Set the bias of the lower limit constraint
inline void HingeJointComponents::setBLowerLimit(Entity jointEntity, decimal bLowerLimit) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mBLowerLimit[mMapEntityToComponentIndex[jointEntity]] = bLowerLimit;
}
// Return the bias of the upper limit constraint
inline decimal HingeJointComponents::getBUpperLimit(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mBUpperLimit[mMapEntityToComponentIndex[jointEntity]];
}
// Set the bias of the upper limit constraint
inline void HingeJointComponents::setBUpperLimit(Entity jointEntity, decimal bUpperLimit) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mBUpperLimit[mMapEntityToComponentIndex[jointEntity]] = bUpperLimit;
}
// Return true if the joint limits are enabled
inline bool HingeJointComponents::getIsLimitEnabled(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mIsLimitEnabled[mMapEntityToComponentIndex[jointEntity]];
}
// Set to true if the joint limits are enabled
inline void HingeJointComponents::setIsLimitEnabled(Entity jointEntity, bool isLimitEnabled) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mIsLimitEnabled[mMapEntityToComponentIndex[jointEntity]] = isLimitEnabled;
}
// Return true if the motor of the joint in enabled
inline bool HingeJointComponents::getIsMotorEnabled(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mIsMotorEnabled[mMapEntityToComponentIndex[jointEntity]];
}
// Set to true if the motor of the joint in enabled
inline void HingeJointComponents::setIsMotorEnabled(Entity jointEntity, bool isMotorEnabled) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mIsMotorEnabled[mMapEntityToComponentIndex[jointEntity]] = isMotorEnabled;
}
// Return the Lower limit (minimum allowed rotation angle in radian)
inline decimal HingeJointComponents::getLowerLimit(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mLowerLimit[mMapEntityToComponentIndex[jointEntity]];
}
// Set the Lower limit (minimum allowed rotation angle in radian)
inline void HingeJointComponents::setLowerLimit(Entity jointEntity, decimal lowerLimit) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mLowerLimit[mMapEntityToComponentIndex[jointEntity]] = lowerLimit;
}
// Return the upper limit (maximum translation distance)
inline decimal HingeJointComponents::getUpperLimit(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mUpperLimit[mMapEntityToComponentIndex[jointEntity]];
}
// Set the upper limit (maximum translation distance)
inline void HingeJointComponents::setUpperLimit(Entity jointEntity, decimal upperLimit) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mUpperLimit[mMapEntityToComponentIndex[jointEntity]] = upperLimit;
}
// Return true if the lower limit is violated
inline bool HingeJointComponents::getIsLowerLimitViolated(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mIsLowerLimitViolated[mMapEntityToComponentIndex[jointEntity]];
}
// Set to true if the lower limit is violated
inline void HingeJointComponents::setIsLowerLimitViolated(Entity jointEntity, bool isLowerLimitViolated) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mIsLowerLimitViolated[mMapEntityToComponentIndex[jointEntity]] = isLowerLimitViolated;
}
// Return true if the upper limit is violated
inline bool HingeJointComponents::getIsUpperLimitViolated(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mIsUpperLimitViolated[mMapEntityToComponentIndex[jointEntity]];
}
// Set to true if the upper limit is violated
inline void HingeJointComponents::setIsUpperLimitViolated(Entity jointEntity, bool isUpperLimitViolated) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mIsUpperLimitViolated[mMapEntityToComponentIndex[jointEntity]] = isUpperLimitViolated;
}
// Return the motor speed (in rad/s)
inline decimal HingeJointComponents::getMotorSpeed(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mMotorSpeed[mMapEntityToComponentIndex[jointEntity]];
}
// Set the motor speed (in rad/s)
inline void HingeJointComponents::setMotorSpeed(Entity jointEntity, decimal motorSpeed) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mMotorSpeed[mMapEntityToComponentIndex[jointEntity]] = motorSpeed;
}
// Return the maximum motor torque (in Newtons) that can be applied to reach to desired motor speed
inline decimal HingeJointComponents::getMaxMotorTorque(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mMaxMotorTorque[mMapEntityToComponentIndex[jointEntity]];
}
// Set the maximum motor torque (in Newtons) that can be applied to reach to desired motor speed
inline void HingeJointComponents::setMaxMotorTorque(Entity jointEntity, decimal maxMotorTorque) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mMaxMotorTorque[mMapEntityToComponentIndex[jointEntity]] = maxMotorTorque;
}
}
#endif