reactphysics3d/include/reactphysics3d/components/SliderJointComponents.h

1013 lines
41 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2018 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef REACTPHYSICS3D_SLIDER_JOINT_COMPONENTS_H
#define REACTPHYSICS3D_SLIDER_JOINT_COMPONENTS_H
// Libraries
#include <reactphysics3d/mathematics/Transform.h>
#include <reactphysics3d/mathematics/Matrix3x3.h>
#include <reactphysics3d/mathematics/Matrix2x2.h>
#include <reactphysics3d/engine/Entity.h>
#include <reactphysics3d/components/Components.h>
#include <reactphysics3d/containers/Map.h>
// ReactPhysics3D namespace
namespace reactphysics3d {
// Class declarations
class MemoryAllocator;
class EntityManager;
class SliderJoint;
enum class JointType;
// Class SliderJointComponents
/**
* This class represent the component of the ECS with data for the SliderJoint.
*/
class SliderJointComponents : public Components {
private:
// -------------------- Attributes -------------------- //
/// Array of joint entities
Entity* mJointEntities;
/// Array of pointers to the joints
SliderJoint** mJoints;
/// Anchor point of body 1 (in local-space coordinates of body 1)
Vector3* mLocalAnchorPointBody1;
/// Anchor point of body 2 (in local-space coordinates of body 2)
Vector3* mLocalAnchorPointBody2;
/// Inertia tensor of body 1 (in world-space coordinates)
Matrix3x3* mI1;
/// Inertia tensor of body 2 (in world-space coordinates)
Matrix3x3* mI2;
/// Accumulated impulse for the 3 translation constraints
Vector2* mImpulseTranslation;
/// Accumulate impulse for the 3 rotation constraints
Vector3* mImpulseRotation;
/// Inverse mass matrix K=JM^-1J^-t of the 3 translation constraints (3x3 matrix)
Matrix2x2* mInverseMassMatrixTranslation;
/// Inverse mass matrix K=JM^-1J^-t of the 3 rotation constraints (3x3 matrix)
Matrix3x3* mInverseMassMatrixRotation;
/// Bias vector for the 3 translation constraints
Vector2* mBiasTranslation;
/// Bias vector for the 3 rotation constraints
Vector3* mBiasRotation;
/// Inverse of the initial orientation difference between the two bodies
Quaternion* mInitOrientationDifferenceInv;
/// Slider axis (in local-space coordinates of body 1)
Vector3* mSliderAxisBody1;
/// Slider axis in world-space coordinates
Vector3* mSliderAxisWorld;
/// Vector r1 in world-space coordinates
Vector3* mR1;
/// Vector r2 in world-space coordinates
Vector3* mR2;
/// First vector orthogonal to the slider axis local-space of body 1
Vector3* mN1;
/// Second vector orthogonal to the slider axis and mN1 in local-space of body 1
Vector3* mN2;
/// Accumulated impulse for the lower limit constraint
decimal* mImpulseLowerLimit;
/// Accumulated impulse for the upper limit constraint
decimal* mImpulseUpperLimit;
/// Accumulated impulse for the motor constraint;
decimal* mImpulseMotor;
/// Inverse of mass matrix K=JM^-1J^t for the upper and lower limit constraints (1x1 matrix)
decimal* mInverseMassMatrixLimit;
/// Inverse of mass matrix K=JM^-1J^t for the motor
decimal* mInverseMassMatrixMotor;
/// Bias of the lower limit constraint
decimal* mBLowerLimit;
/// Bias of the upper limit constraint
decimal* mBUpperLimit;
/// True if the joint limits are enabled
bool* mIsLimitEnabled;
/// True if the motor of the joint in enabled
bool* mIsMotorEnabled;
/// Lower limit (minimum allowed rotation angle in radian)
decimal* mLowerLimit;
/// Upper limit (maximum translation distance)
decimal* mUpperLimit;
/// True if the lower limit is violated
bool* mIsLowerLimitViolated;
/// True if the upper limit is violated
bool* mIsUpperLimitViolated;
/// Motor speed (in rad/s)
decimal* mMotorSpeed;
/// Maximum motor force (in Newtons) that can be applied to reach to desired motor speed
decimal* mMaxMotorForce;
/// Cross product of r2 and n1
Vector3* mR2CrossN1;
/// Cross product of r2 and n2
Vector3* mR2CrossN2;
/// Cross product of r2 and the slider axis
Vector3* mR2CrossSliderAxis;
/// Cross product of vector (r1 + u) and n1
Vector3* mR1PlusUCrossN1;
/// Cross product of vector (r1 + u) and n2
Vector3* mR1PlusUCrossN2;
/// Cross product of vector (r1 + u) and the slider axis
Vector3* mR1PlusUCrossSliderAxis;
// -------------------- Methods -------------------- //
/// Allocate memory for a given number of components
virtual void allocate(uint32 nbComponentsToAllocate) override;
/// Destroy a component at a given index
virtual void destroyComponent(uint32 index) override;
/// Move a component from a source to a destination index in the components array
virtual void moveComponentToIndex(uint32 srcIndex, uint32 destIndex) override;
/// Swap two components in the array
virtual void swapComponents(uint32 index1, uint32 index2) override;
public:
/// Structure for the data of a transform component
struct SliderJointComponent {
bool isLimitEnabled;
bool isMotorEnabled;
decimal lowerLimit;
decimal upperLimit;
decimal motorSpeed;
decimal maxMotorForce;
/// Constructor
SliderJointComponent(bool isLimitEnabled, bool isMotorEnabled, decimal lowerLimit, decimal upperLimit,
decimal motorSpeed, decimal maxMotorForce)
:isLimitEnabled(isLimitEnabled), isMotorEnabled(isMotorEnabled), lowerLimit(lowerLimit), upperLimit(upperLimit),
motorSpeed(motorSpeed), maxMotorForce(maxMotorForce) {
}
};
// -------------------- Methods -------------------- //
/// Constructor
SliderJointComponents(MemoryAllocator& allocator);
/// Destructor
virtual ~SliderJointComponents() override = default;
/// Add a component
void addComponent(Entity jointEntity, bool isSleeping, const SliderJointComponent& component);
/// Return a pointer to a given joint
SliderJoint* getJoint(Entity jointEntity) const;
/// Set the joint pointer to a given joint
void setJoint(Entity jointEntity, SliderJoint* joint) const;
/// Return the local anchor point of body 1 for a given joint
const Vector3& getLocalAnchorPointBody1(Entity jointEntity) const;
/// Set the local anchor point of body 1 for a given joint
void setLocalAnchorPointBody1(Entity jointEntity, const Vector3& localAnchoirPointBody1);
/// Return the local anchor point of body 2 for a given joint
const Vector3& getLocalAnchorPointBody2(Entity jointEntity) const;
/// Set the local anchor point of body 2 for a given joint
void setLocalAnchorPointBody2(Entity jointEntity, const Vector3& localAnchoirPointBody2);
/// Return the inertia tensor of body 1 (in world-space coordinates)
const Matrix3x3& getI1(Entity jointEntity) const;
/// Set the inertia tensor of body 1 (in world-space coordinates)
void setI1(Entity jointEntity, const Matrix3x3& i1);
/// Return the inertia tensor of body 2 (in world-space coordinates)
const Matrix3x3& getI2(Entity jointEntity) const;
/// Set the inertia tensor of body 2 (in world-space coordinates)
void setI2(Entity jointEntity, const Matrix3x3& i2);
/// Return the translation impulse
Vector2& getImpulseTranslation(Entity jointEntity);
/// Set the translation impulse
void setImpulseTranslation(Entity jointEntity, const Vector2& impulseTranslation);
/// Return the translation impulse
Vector3& getImpulseRotation(Entity jointEntity);
/// Set the translation impulse
void setImpulseRotation(Entity jointEntity, const Vector3& impulseTranslation);
/// Return the translation inverse mass matrix of the constraint
Matrix2x2& getInverseMassMatrixTranslation(Entity jointEntity);
/// Set the translation inverse mass matrix of the constraint
void setInverseMassMatrixTranslation(Entity jointEntity, const Matrix2x2& inverseMassMatrix);
/// Return the rotation inverse mass matrix of the constraint
Matrix3x3& getInverseMassMatrixRotation(Entity jointEntity);
/// Set the rotation inverse mass matrix of the constraint
void setInverseMassMatrixRotation(Entity jointEntity, const Matrix3x3& inverseMassMatrix);
/// Return the translation bias
Vector2& getBiasTranslation(Entity jointEntity);
/// Set the translation impulse
void setBiasTranslation(Entity jointEntity, const Vector2& impulseTranslation);
/// Return the rotation bias
Vector3& getBiasRotation(Entity jointEntity);
/// Set the rotation impulse
void setBiasRotation(Entity jointEntity, const Vector3& impulseRotation);
/// Return the initial orientation difference
Quaternion& getInitOrientationDifferenceInv(Entity jointEntity);
/// Set the rotation impulse
void setInitOrientationDifferenceInv(Entity jointEntity, const Quaternion& initOrientationDifferenceInv);
/// Return the slider axis (in local-space coordinates of body 1)
Vector3& getSliderAxisBody1(Entity jointEntity);
/// Set the slider axis (in local-space coordinates of body 1)
void setSliderAxisBody1(Entity jointEntity, const Vector3& sliderAxisBody1);
/// Retunr the slider axis in world-space coordinates
Vector3& getSliderAxisWorld(Entity jointEntity);
/// Set the slider axis in world-space coordinates
void setSliderAxisWorld(Entity jointEntity, const Vector3& sliderAxisWorld);
/// Return the vector r1 in world-space coordinates
Vector3& getR1(Entity jointEntity);
/// Set the vector r1 in world-space coordinates
void setR1(Entity jointEntity, const Vector3& r1);
/// Return the vector r2 in world-space coordinates
Vector3& getR2(Entity jointEntity);
/// Set the vector r2 in world-space coordinates
void setR2(Entity jointEntity, const Vector3& r2);
/// Return the first vector orthogonal to the slider axis local-space of body 1
Vector3& getN1(Entity jointEntity);
/// Set the first vector orthogonal to the slider axis local-space of body 1
void setN1(Entity jointEntity, const Vector3& n1);
/// Return the second vector orthogonal to the slider axis and mN1 in local-space of body 1
Vector3& getN2(Entity jointEntity);
/// Set the second vector orthogonal to the slider axis and mN1 in local-space of body 1
void setN2(Entity jointEntity, const Vector3& n2);
/// Return the accumulated impulse for the lower limit constraint
decimal getImpulseLowerLimit(Entity jointEntity) const;
/// Set the accumulated impulse for the lower limit constraint
void setImpulseLowerLimit(Entity jointEntity, decimal impulseLowerLimit);
/// Return the accumulated impulse for the upper limit constraint
decimal getImpulseUpperLimit(Entity jointEntity) const;
/// Set the accumulated impulse for the upper limit constraint
void setImpulseUpperLimit(Entity jointEntity, decimal impulseUpperLimit) const;
/// Return the accumulated impulse for the motor constraint;
decimal getImpulseMotor(Entity jointEntity) const;
/// Set the accumulated impulse for the motor constraint;
void setImpulseMotor(Entity jointEntity, decimal impulseMotor);
/// Return the inverse of mass matrix K=JM^-1J^t for the limits (1x1 matrix)
decimal getInverseMassMatrixLimit(Entity jointEntity) const;
/// Set the inverse of mass matrix K=JM^-1J^t for the limits (1x1 matrix)
void setInverseMassMatrixLimit(Entity jointEntity, decimal inverseMassMatrixLimitMotor);
/// Return the inverse of mass matrix K=JM^-1J^t for the motor
decimal getInverseMassMatrixMotor(Entity jointEntity);
/// Set the inverse of mass matrix K=JM^-1J^t for the motor
void setInverseMassMatrixMotor(Entity jointEntity, decimal inverseMassMatrixMotor);
/// Return the bias of the lower limit constraint
decimal getBLowerLimit(Entity jointEntity) const;
/// Set the bias of the lower limit constraint
void setBLowerLimit(Entity jointEntity, decimal bLowerLimit) const;
/// Return the bias of the upper limit constraint
decimal getBUpperLimit(Entity jointEntity) const;
/// Set the bias of the upper limit constraint
void setBUpperLimit(Entity jointEntity, decimal bUpperLimit);
/// Return true if the joint limits are enabled
bool getIsLimitEnabled(Entity jointEntity) const;
/// Set to true if the joint limits are enabled
void setIsLimitEnabled(Entity jointEntity, bool isLimitEnabled);
/// Return true if the motor of the joint in enabled
bool getIsMotorEnabled(Entity jointEntity) const;
/// Set to true if the motor of the joint in enabled
void setIsMotorEnabled(Entity jointEntity, bool isMotorEnabled) const;
/// Return the Lower limit (minimum allowed rotation angle in radian)
decimal getLowerLimit(Entity jointEntity) const;
/// Set the Lower limit (minimum allowed rotation angle in radian)
void setLowerLimit(Entity jointEntity, decimal lowerLimit) const;
/// Return the upper limit (maximum translation distance)
decimal getUpperLimit(Entity jointEntity) const;
/// Set the upper limit (maximum translation distance)
void setUpperLimit(Entity jointEntity, decimal upperLimit);
/// Return true if the lower limit is violated
bool getIsLowerLimitViolated(Entity jointEntity) const;
/// Set to true if the lower limit is violated
void setIsLowerLimitViolated(Entity jointEntity, bool isLowerLimitViolated);
/// Return true if the upper limit is violated
bool getIsUpperLimitViolated(Entity jointEntity) const;
/// Set to true if the upper limit is violated
void setIsUpperLimitViolated(Entity jointEntity, bool isUpperLimitViolated) const;
/// Return the motor speed (in rad/s)
decimal getMotorSpeed(Entity jointEntity) const;
/// Set the motor speed (in rad/s)
void setMotorSpeed(Entity jointEntity, decimal motorSpeed);
/// Return the maximum motor force (in Newtons) that can be applied to reach to desired motor speed
decimal getMaxMotorForce(Entity jointEntity) const;
/// Set the maximum motor force (in Newtons) that can be applied to reach to desired motor speed
void setMaxMotorForce(Entity jointEntity, decimal maxMotorForce);
/// Return the cross product of r2 and n1
Vector3& getR2CrossN1(Entity jointEntity);
/// Set the cross product of r2 and n1
void setR2CrossN1(Entity jointEntity, const Vector3& r2CrossN1);
/// Return the cross product of r2 and n2
Vector3& getR2CrossN2(Entity jointEntity);
/// Set the cross product of r2 and n2
void setR2CrossN2(Entity jointEntity, const Vector3& r2CrossN2);
/// Return the cross product of r2 and the slider axis
Vector3& getR2CrossSliderAxis(Entity jointEntity);
/// Set the cross product of r2 and the slider axis
void setR2CrossSliderAxis(Entity jointEntity, const Vector3& r2CrossSliderAxis);
/// Return the cross product of vector (r1 + u) and n1
Vector3& getR1PlusUCrossN1(Entity jointEntity);
/// Set the cross product of vector (r1 + u) and n1
void setR1PlusUCrossN1(Entity jointEntity, const Vector3& r1PlusUCrossN1);
/// Return the cross product of vector (r1 + u) and n2
Vector3& getR1PlusUCrossN2(Entity jointEntity);
/// Set the cross product of vector (r1 + u) and n2
void setR1PlusUCrossN2(Entity jointEntity, const Vector3& r1PlusUCrossN2);
/// Return the cross product of vector (r1 + u) and the slider axis
Vector3& getR1PlusUCrossSliderAxis(Entity jointEntity);
/// Set the cross product of vector (r1 + u) and the slider axis
void setR1PlusUCrossSliderAxis(Entity jointEntity, const Vector3& r1PlusUCrossSliderAxis);
// -------------------- Friendship -------------------- //
friend class BroadPhaseSystem;
friend class SolveSliderJointSystem;
};
// Return a pointer to a given joint
inline SliderJoint* SliderJointComponents::getJoint(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mJoints[mMapEntityToComponentIndex[jointEntity]];
}
// Set the joint pointer to a given joint
inline void SliderJointComponents::setJoint(Entity jointEntity, SliderJoint* joint) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mJoints[mMapEntityToComponentIndex[jointEntity]] = joint;
}
// Return the local anchor point of body 1 for a given joint
inline const Vector3& SliderJointComponents::getLocalAnchorPointBody1(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mLocalAnchorPointBody1[mMapEntityToComponentIndex[jointEntity]];
}
// Set the local anchor point of body 1 for a given joint
inline void SliderJointComponents::setLocalAnchorPointBody1(Entity jointEntity, const Vector3& localAnchoirPointBody1) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mLocalAnchorPointBody1[mMapEntityToComponentIndex[jointEntity]] = localAnchoirPointBody1;
}
// Return the local anchor point of body 2 for a given joint
inline const Vector3& SliderJointComponents::getLocalAnchorPointBody2(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mLocalAnchorPointBody2[mMapEntityToComponentIndex[jointEntity]];
}
// Set the local anchor point of body 2 for a given joint
inline void SliderJointComponents::setLocalAnchorPointBody2(Entity jointEntity, const Vector3& localAnchoirPointBody2) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mLocalAnchorPointBody2[mMapEntityToComponentIndex[jointEntity]] = localAnchoirPointBody2;
}
// Return the inertia tensor of body 1 (in world-space coordinates)
inline const Matrix3x3& SliderJointComponents::getI1(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mI1[mMapEntityToComponentIndex[jointEntity]];
}
// Set the inertia tensor of body 1 (in world-space coordinates)
inline void SliderJointComponents::setI1(Entity jointEntity, const Matrix3x3& i1) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mI1[mMapEntityToComponentIndex[jointEntity]] = i1;
}
// Return the inertia tensor of body 2 (in world-space coordinates)
inline const Matrix3x3& SliderJointComponents::getI2(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mI2[mMapEntityToComponentIndex[jointEntity]];
}
// Set the inertia tensor of body 2 (in world-space coordinates)
inline void SliderJointComponents::setI2(Entity jointEntity, const Matrix3x3& i2) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mI2[mMapEntityToComponentIndex[jointEntity]] = i2;
}
// Return the translation impulse
inline Vector2& SliderJointComponents::getImpulseTranslation(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mImpulseTranslation[mMapEntityToComponentIndex[jointEntity]];
}
// Set the translation impulse
inline void SliderJointComponents::setImpulseTranslation(Entity jointEntity, const Vector2& impulseTranslation) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mImpulseTranslation[mMapEntityToComponentIndex[jointEntity]] = impulseTranslation;
}
// Return the translation impulse
inline Vector3& SliderJointComponents::getImpulseRotation(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mImpulseRotation[mMapEntityToComponentIndex[jointEntity]];
}
// Set the translation impulse
inline void SliderJointComponents::setImpulseRotation(Entity jointEntity, const Vector3& impulseTranslation) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mImpulseRotation[mMapEntityToComponentIndex[jointEntity]] = impulseTranslation;
}
// Return the translation inverse mass matrix of the constraint
inline Matrix2x2& SliderJointComponents::getInverseMassMatrixTranslation(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mInverseMassMatrixTranslation[mMapEntityToComponentIndex[jointEntity]];
}
// Set the translation inverse mass matrix of the constraint
inline void SliderJointComponents::setInverseMassMatrixTranslation(Entity jointEntity, const Matrix2x2& inverseMassMatrix) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mInverseMassMatrixTranslation[mMapEntityToComponentIndex[jointEntity]] = inverseMassMatrix;
}
// Return the rotation inverse mass matrix of the constraint
inline Matrix3x3& SliderJointComponents::getInverseMassMatrixRotation(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mInverseMassMatrixRotation[mMapEntityToComponentIndex[jointEntity]];
}
// Set the rotation inverse mass matrix of the constraint
inline void SliderJointComponents::setInverseMassMatrixRotation(Entity jointEntity, const Matrix3x3& inverseMassMatrix) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mInverseMassMatrixRotation[mMapEntityToComponentIndex[jointEntity]] = inverseMassMatrix;
}
// Return the translation bias
inline Vector2& SliderJointComponents::getBiasTranslation(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mBiasTranslation[mMapEntityToComponentIndex[jointEntity]];
}
// Set the translation impulse
inline void SliderJointComponents::setBiasTranslation(Entity jointEntity, const Vector2& impulseTranslation) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mBiasTranslation[mMapEntityToComponentIndex[jointEntity]] = impulseTranslation;
}
// Return the rotation bias
inline Vector3& SliderJointComponents::getBiasRotation(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mBiasRotation[mMapEntityToComponentIndex[jointEntity]];
}
// Set the rotation impulse
inline void SliderJointComponents::setBiasRotation(Entity jointEntity, const Vector3& impulseRotation) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mBiasRotation[mMapEntityToComponentIndex[jointEntity]] = impulseRotation;
}
// Return the initial orientation difference
inline Quaternion& SliderJointComponents::getInitOrientationDifferenceInv(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mInitOrientationDifferenceInv[mMapEntityToComponentIndex[jointEntity]];
}
// Set the rotation impulse
inline void SliderJointComponents::setInitOrientationDifferenceInv(Entity jointEntity, const Quaternion& initOrientationDifferenceInv) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mInitOrientationDifferenceInv[mMapEntityToComponentIndex[jointEntity]] = initOrientationDifferenceInv;
}
// Return the slider axis (in local-space coordinates of body 1)
inline Vector3& SliderJointComponents::getSliderAxisBody1(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mSliderAxisBody1[mMapEntityToComponentIndex[jointEntity]];
}
// Set the slider axis (in local-space coordinates of body 1)
inline void SliderJointComponents::setSliderAxisBody1(Entity jointEntity, const Vector3& sliderAxisBody1) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mSliderAxisBody1[mMapEntityToComponentIndex[jointEntity]] = sliderAxisBody1;
}
// Retunr the slider axis in world-space coordinates
inline Vector3& SliderJointComponents::getSliderAxisWorld(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mSliderAxisWorld[mMapEntityToComponentIndex[jointEntity]];
}
// Set the slider axis in world-space coordinates
inline void SliderJointComponents::setSliderAxisWorld(Entity jointEntity, const Vector3& sliderAxisWorld) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mSliderAxisWorld[mMapEntityToComponentIndex[jointEntity]] = sliderAxisWorld;
}
// Return the vector r1 in world-space coordinates
inline Vector3& SliderJointComponents::getR1(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mR1[mMapEntityToComponentIndex[jointEntity]];
}
// Set the vector r1 in world-space coordinates
inline void SliderJointComponents::setR1(Entity jointEntity, const Vector3& r1) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mR1[mMapEntityToComponentIndex[jointEntity]] = r1;
}
// Return the vector r2 in world-space coordinates
inline Vector3& SliderJointComponents::getR2(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mR2[mMapEntityToComponentIndex[jointEntity]];
}
// Set the vector r2 in world-space coordinates
inline void SliderJointComponents::setR2(Entity jointEntity, const Vector3& r2) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mR2[mMapEntityToComponentIndex[jointEntity]] = r2;
}
// Return the first vector orthogonal to the slider axis local-space of body 1
inline Vector3& SliderJointComponents::getN1(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mN1[mMapEntityToComponentIndex[jointEntity]];
}
// Set the first vector orthogonal to the slider axis local-space of body 1
inline void SliderJointComponents::setN1(Entity jointEntity, const Vector3& n1) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mN1[mMapEntityToComponentIndex[jointEntity]] = n1;
}
// Return the second vector orthogonal to the slider axis and mN1 in local-space of body 1
inline Vector3& SliderJointComponents::getN2(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mN2[mMapEntityToComponentIndex[jointEntity]];
}
// Set the second vector orthogonal to the slider axis and mN1 in local-space of body 1
inline void SliderJointComponents::setN2(Entity jointEntity, const Vector3& n2) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mN2[mMapEntityToComponentIndex[jointEntity]] = n2;
}
// Return the accumulated impulse for the lower limit constraint
inline decimal SliderJointComponents::getImpulseLowerLimit(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mImpulseLowerLimit[mMapEntityToComponentIndex[jointEntity]];
}
// Set the accumulated impulse for the lower limit constraint
inline void SliderJointComponents::setImpulseLowerLimit(Entity jointEntity, decimal impulseLowerLimit) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mImpulseLowerLimit[mMapEntityToComponentIndex[jointEntity]] = impulseLowerLimit;
}
// Return the accumulated impulse for the upper limit constraint
inline decimal SliderJointComponents::getImpulseUpperLimit(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mImpulseUpperLimit[mMapEntityToComponentIndex[jointEntity]];
}
// Set the accumulated impulse for the upper limit constraint
inline void SliderJointComponents::setImpulseUpperLimit(Entity jointEntity, decimal impulseUpperLimit) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mImpulseUpperLimit[mMapEntityToComponentIndex[jointEntity]] = impulseUpperLimit;
}
// Return the accumulated impulse for the motor constraint;
inline decimal SliderJointComponents::getImpulseMotor(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mImpulseMotor[mMapEntityToComponentIndex[jointEntity]];
}
// Set the accumulated impulse for the motor constraint;
inline void SliderJointComponents::setImpulseMotor(Entity jointEntity, decimal impulseMotor) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mImpulseMotor[mMapEntityToComponentIndex[jointEntity]] = impulseMotor;
}
// Return the inverse of mass matrix K=JM^-1J^t for the limits (1x1 matrix)
inline decimal SliderJointComponents::getInverseMassMatrixLimit(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mInverseMassMatrixLimit[mMapEntityToComponentIndex[jointEntity]];
}
// Set the inverse of mass matrix K=JM^-1J^t for the limits (1x1 matrix)
inline void SliderJointComponents::setInverseMassMatrixLimit(Entity jointEntity, decimal inverseMassMatrixLimitMotor) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mInverseMassMatrixLimit[mMapEntityToComponentIndex[jointEntity]] = inverseMassMatrixLimitMotor;
}
// Return the inverse of mass matrix K=JM^-1J^t for the motor
inline decimal SliderJointComponents::getInverseMassMatrixMotor(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mInverseMassMatrixMotor[mMapEntityToComponentIndex[jointEntity]];
}
// Return the inverse of mass matrix K=JM^-1J^t for the motor
inline void SliderJointComponents::setInverseMassMatrixMotor(Entity jointEntity, decimal inverseMassMatrixMotor) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mInverseMassMatrixMotor[mMapEntityToComponentIndex[jointEntity]] = inverseMassMatrixMotor;
}
// Return the bias of the lower limit constraint
inline decimal SliderJointComponents::getBLowerLimit(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mBLowerLimit[mMapEntityToComponentIndex[jointEntity]];
}
// Set the bias of the lower limit constraint
inline void SliderJointComponents::setBLowerLimit(Entity jointEntity, decimal bLowerLimit) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mBLowerLimit[mMapEntityToComponentIndex[jointEntity]] = bLowerLimit;
}
// Return the bias of the upper limit constraint
inline decimal SliderJointComponents::getBUpperLimit(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mBUpperLimit[mMapEntityToComponentIndex[jointEntity]];
}
// Set the bias of the upper limit constraint
inline void SliderJointComponents::setBUpperLimit(Entity jointEntity, decimal bUpperLimit) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mBUpperLimit[mMapEntityToComponentIndex[jointEntity]] = bUpperLimit;
}
// Return true if the joint limits are enabled
inline bool SliderJointComponents::getIsLimitEnabled(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mIsLimitEnabled[mMapEntityToComponentIndex[jointEntity]];
}
// Set to true if the joint limits are enabled
inline void SliderJointComponents::setIsLimitEnabled(Entity jointEntity, bool isLimitEnabled) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mIsLimitEnabled[mMapEntityToComponentIndex[jointEntity]] = isLimitEnabled;
}
// Return true if the motor of the joint in enabled
inline bool SliderJointComponents::getIsMotorEnabled(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mIsMotorEnabled[mMapEntityToComponentIndex[jointEntity]];
}
// Set to true if the motor of the joint in enabled
inline void SliderJointComponents::setIsMotorEnabled(Entity jointEntity, bool isMotorEnabled) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mIsMotorEnabled[mMapEntityToComponentIndex[jointEntity]] = isMotorEnabled;
}
// Return the Lower limit (minimum allowed rotation angle in radian)
inline decimal SliderJointComponents::getLowerLimit(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mLowerLimit[mMapEntityToComponentIndex[jointEntity]];
}
// Set the Lower limit (minimum allowed rotation angle in radian)
inline void SliderJointComponents::setLowerLimit(Entity jointEntity, decimal lowerLimit) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mLowerLimit[mMapEntityToComponentIndex[jointEntity]] = lowerLimit;
}
// Return the upper limit (maximum translation distance)
inline decimal SliderJointComponents::getUpperLimit(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mUpperLimit[mMapEntityToComponentIndex[jointEntity]];
}
// Set the upper limit (maximum translation distance)
inline void SliderJointComponents::setUpperLimit(Entity jointEntity, decimal upperLimit) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mUpperLimit[mMapEntityToComponentIndex[jointEntity]] = upperLimit;
}
// Return true if the lower limit is violated
inline bool SliderJointComponents::getIsLowerLimitViolated(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mIsLowerLimitViolated[mMapEntityToComponentIndex[jointEntity]];
}
// Set to true if the lower limit is violated
inline void SliderJointComponents::setIsLowerLimitViolated(Entity jointEntity, bool isLowerLimitViolated) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mIsLowerLimitViolated[mMapEntityToComponentIndex[jointEntity]] = isLowerLimitViolated;
}
// Return true if the upper limit is violated
inline bool SliderJointComponents::getIsUpperLimitViolated(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mIsUpperLimitViolated[mMapEntityToComponentIndex[jointEntity]];
}
// Set to true if the upper limit is violated
inline void SliderJointComponents::setIsUpperLimitViolated(Entity jointEntity, bool isUpperLimitViolated) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mIsUpperLimitViolated[mMapEntityToComponentIndex[jointEntity]] = isUpperLimitViolated;
}
// Return the motor speed (in rad/s)
inline decimal SliderJointComponents::getMotorSpeed(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mMotorSpeed[mMapEntityToComponentIndex[jointEntity]];
}
// Set the motor speed (in rad/s)
inline void SliderJointComponents::setMotorSpeed(Entity jointEntity, decimal motorSpeed) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mMotorSpeed[mMapEntityToComponentIndex[jointEntity]] = motorSpeed;
}
// Return the maximum motor torque (in Newtons) that can be applied to reach to desired motor speed
inline decimal SliderJointComponents::getMaxMotorForce(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mMaxMotorForce[mMapEntityToComponentIndex[jointEntity]];
}
// Set the maximum motor torque (in Newtons) that can be applied to reach to desired motor speed
inline void SliderJointComponents::setMaxMotorForce(Entity jointEntity, decimal maxMotorForce) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mMaxMotorForce[mMapEntityToComponentIndex[jointEntity]] = maxMotorForce;
}
// Return the cross product of r2 and n1
inline Vector3& SliderJointComponents::getR2CrossN1(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mR2CrossN1[mMapEntityToComponentIndex[jointEntity]];
}
// Set the cross product of r2 and n1
inline void SliderJointComponents::setR2CrossN1(Entity jointEntity, const Vector3& r2CrossN1) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mR2CrossN1[mMapEntityToComponentIndex[jointEntity]] = r2CrossN1;
}
// Return the cross product of r2 and n2
inline Vector3& SliderJointComponents::getR2CrossN2(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mR2CrossN2[mMapEntityToComponentIndex[jointEntity]];
}
// Set the cross product of r2 and n2
inline void SliderJointComponents::setR2CrossN2(Entity jointEntity, const Vector3& r2CrossN2) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mR2CrossN2[mMapEntityToComponentIndex[jointEntity]] = r2CrossN2;
}
// Return the cross product of r2 and the slider axis
inline Vector3& SliderJointComponents::getR2CrossSliderAxis(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mR2CrossSliderAxis[mMapEntityToComponentIndex[jointEntity]];
}
// Set the cross product of r2 and the slider axis
inline void SliderJointComponents::setR2CrossSliderAxis(Entity jointEntity, const Vector3& r2CrossSliderAxis) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mR2CrossSliderAxis[mMapEntityToComponentIndex[jointEntity]] = r2CrossSliderAxis;
}
// Return the cross product of vector (r1 + u) and n1
inline Vector3& SliderJointComponents::getR1PlusUCrossN1(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mR1PlusUCrossN1[mMapEntityToComponentIndex[jointEntity]];
}
// Set the cross product of vector (r1 + u) and n1
inline void SliderJointComponents::setR1PlusUCrossN1(Entity jointEntity, const Vector3& r1PlusUCrossN1) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mR1PlusUCrossN1[mMapEntityToComponentIndex[jointEntity]] = r1PlusUCrossN1;
}
// Return the cross product of vector (r1 + u) and n2
inline Vector3& SliderJointComponents::getR1PlusUCrossN2(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mR1PlusUCrossN2[mMapEntityToComponentIndex[jointEntity]];
}
// Set the cross product of vector (r1 + u) and n2
inline void SliderJointComponents::setR1PlusUCrossN2(Entity jointEntity, const Vector3& r1PlusUCrossN2) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mR1PlusUCrossN2[mMapEntityToComponentIndex[jointEntity]] = r1PlusUCrossN2;
}
// Return the cross product of vector (r1 + u) and the slider axis
inline Vector3& SliderJointComponents::getR1PlusUCrossSliderAxis(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mR1PlusUCrossSliderAxis[mMapEntityToComponentIndex[jointEntity]];
}
// Set the cross product of vector (r1 + u) and the slider axis
inline void SliderJointComponents::setR1PlusUCrossSliderAxis(Entity jointEntity, const Vector3& r1PlusUCrossSliderAxis) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mR1PlusUCrossSliderAxis[mMapEntityToComponentIndex[jointEntity]] = r1PlusUCrossSliderAxis;
}
}
#endif